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ABSTRACT 

We deal with the problem of preserving various versions of complete- 

ness in (< t~)-support iterations of forcing notions, generalizing the case 

"S-complete proper is preserved by CS iterations for a stationary co- 

stationary S C wl". We give applications to Uniformization and the 
Whitehead problem. In particular, for a strongly inaccessible cardinal 
and a stationary set S C ~ with fat complement we can have uniformiza- 
tion for every (Aa" : 5 E S'),  A~ C 5 = supAa, cf(5) = otp(A~) and a 
stationary non-reflecting set S' C_ S (see B.8.2). 

ANNOTATED CONTENTS 

Sec t ion  0- I n t r o d u c t i o n  We put this work in a context and state our 

aim. 

0.1 Background: Abelian groups 

-0 .2  Background: forcing [We define (< tQ-support iteration.] 

0.3 Notation 

CASE A 

Here we deal with Case A, say t~ = k +, cf(k) = A, ~ = A <~. 
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Sec t ion  A . I :  C o m p l e t e  forcing not ions  We define various variants 

of completeness and related games; the most  impor tant  are the strong S- 
completeness and real (So, 31, D)-completeness. We prove that  the strong 

S-completeness  is preserved in (< ~)-support  i terations (A.1.13) 

Sec t ion  A.2:  E x a m p l e s  We look at guessing clubs C ~- {C5 : ~ E S}. 

If [c~ E nacc(Cs) ::~ cf(a)  4 A 1 we give a forcing notion (in our context)  

which adds a club C of a such tha t  C Cl nacc(Cs) is bounded in (f for all 

(i E S. (Later, using a preservation theorem, we will get the consistency 

of "no such C guesses clubs".) Then we deal with uniformization (i.e., 

P r s )  and the (closely related) being Whitehead.  

Sec t ion  A.3:  T h e  i terat ion  t h e o r e m  We deal extensively with (stan- 
dard) trees of conditions, their projections and inverse limits. The aim 

is to build a (II~7, N)-generic condition forcing G 7 n N, and the  trees of 
conditions are approximations to it. The  main result is the  preservation 

theorem for our case (A.3.7). 

Sec t ion  A.4:  T h e  A x i o m  We formulate a Forcing Axiom relevant for 

our case and we s ta te  its consistency. 

CASE B 

Here we deal with t¢ strongly inaccessible, S C_ t~ usually a s ta t ionary 
"thin" set of singular cardinals. There is no point in asking even for 

Rl-completeness,  so the completeness demands  are only on sequences of 

models. 

Sec t ion  B.5:  More  on c o m p l e t e n e s s  of  forcing not ions  We define 

completeness of forcing notions with respect to a suitable family £ of 
increasing sequences /~- of models, say, such that  U j<5  Nj N ~ ~ S for 
limit 5 <_ gg(/~). S is the non-reflecting s ta t ionary set where "something 
is done". The suitable preservation theorem for (< tc)-support i terations 

is proved in B.5.6. So this ~ plays a role of S0 of Case A, and the 

preservation will play the role of preservation of strong S0-completeness.  
We end by defining the version of completeness (which later we prove is 

preserved; it is parallel to (So, 31, D)-completeness  of Case A). 

Sect ion  B.6:  E x a m p l e s  for  a n  inaccess ible  cardinal  g We present 

a forcing notion taking care of P r s ,  at least for cases which are locally 
OK, say, S C_ ~ is s ta t ionary non-reflecting. We show tha t  it satisfies the 

right propert ies (for iterating) for the naturally defined £0, ~1. Then we 

turn  to the related problem of the  Whi tehead  group. 

Sect ion  B.7:  T h e  i terat ion  t h e o r e m  for inaccess ib le  a We show 

that  completeness for (£0,~1) is preserved in (< a) -suppor t  i terations 

(this covers the uniformization). Then we prove the  a+-cc for the  simplest 

cases. 

Sec t ion  B.8: T h e  A x i o m  and its appl icat ions  We phrase the axiom 

and prove its consistency. The  main case is for a s ta t ionary set S C_ t~ 

whose complement  is fat, but  checking that  forcing notions fit is clear 

for forcing notion related to non-reflecting subsets S t C S. So S can 



Vol. 136, 2003 (< ,~)-SUPPORT ITERATIONS 31 

have stat ionary intersection with S~ for any regular a < n. The instance 

of S N inaccessible is not in our mind, but  it is easier similar to the 

successor case. Next we show the consistency of "GCH + there are almost 

free Abelian groups in h;, and all of them are Whitehead".  We start  with a 

sufficiently indestructibly weakly compact cardinal and a stat ionary non- 

reflecting se~ o ° C ~, for simplicity S C_ S~0, and then we force the axiom. 

Enough weak compactness remains, so that  we have: every stat ionary set 

S r C_ ~ \ S reflects in inaccessibles, hence "G almost free in n" implies 

"F(G) C_ S mod D~,", but  the axiom makes all of them Whitehead. 

0. I n t r o d u c t i o n  

In the present paper we deal with the following question from the Theory of 

Forcing: 

P r o b l e m  we  address 0.1: Iterate with (< n)-support forcing notions not collaps- 

ing cardinals _~ n preserving this property, generalizing "S-complete proper is 

preserved by CS iterations for a stationary co-stationary S c_ wl". 

We concentrate on the ZFC case (i.e., we prefer to avoid the use of large 

cardinals, or deal with cardinals which may exists in L) and we demand that  no 

bounded subsets of t~ are added. 

We use as our test problems instances of uniformization (see 0.2 below) and 

Whitehead groups (see 0.3 below), but the need for 0.1 comes from various ques- 

tions of Set Theory. The case of CS iteration and n = R1 has received special 

attention (so we generalize no n e w  real case by S-completeness, see [14, Ch. V]) 

and is a very well understood case, but still with consequences in CS iterations 

of S-complete forcing notions. This will be our starting point. 

One of the questions which caused us to look again in this direction was: 

is it consistent with ZFC + GCH that  for some regular ~ there is an 

almost free Abelian group of cardinality n, but every such Abelian 

group is a Whitehead one? 

By GSbel and Shelah [3], we have strong counterexamples for ~ = 1~: an almost 

free Abelian group G on n with HOM(G, Z) = {0}. Here, the idea is that  we have 

an axiom for G with r (a)  c S (to ensure being Whitehead) and some reflection 

principle gives 

F(G) \ S is stationary ~ G is not almost free in 
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(see B.8). This  s t r eam of investigations has a long history already, one of our 

s tar t ing  points  was [12] (see earlier references there too), and later  Mekler and 

Shelah [8], [7]. 

Definition 0.2: Let ~ > A be cardinals.  
def 

1. We let S~ = {~ < t~: cf((~) = cf(A)}. 

2. A (~, A)-ladder system is a sequence fi, = (As : (~ • S) such tha t  the set 

dom(A)  = S is a s ta t ionary  subset  of S~, and 

(V5 • S)(A~ C_ 5 = sup(As)  & otp(A~) = cf(A)). 

When  we say tha t  fi~ is a (n, A)-ladder sys tem on S, then we mean  tha t  

dora(.4) = S. 

3. Let  A be a (n, A)-ladder system. We say t ha t  .4 has the h*-Uniformization 
Property (and then we may  say tha t  it has h * - U P )  if h*: n ---+ n and 

for every sequence / t  = (h5 : 6 E S}, S = dom(fi,),  such tha t  

(V6 • S)(h6 : A6 > n & (Va • A6)(h6(a) < h*(a))) 

there is a function h: ~ ~ n with 

(V6 • S ) ( sup{a  • A6:  h6(a)  ¢ h(a)}  < 6). 

If  h* is constant ly  p, then we may  write # - U P ;  if p = A, then we 

may  omit  it. 

4. For a s ta t ionary  set S C S [ ,  let P r s . ,  be the following s ta tement :  

P r s , ,  - each (t~, A)-ladder sys tem A on S has the #-Uniformizat ion  

Proper ty .  

We may  replace # by h*; if tt = A we may  omit  it. 

There  are several works on the U P ;  for example,  the author  proved tha t  it 

is consistent with G C H  tha t  there is a (~+, ~)-ladder sys tem on S~ + with  the 

Uniformizat ion P rope r ty  (Steinhorn and King [18], presented in more  general 

cases [12]), bu t  necessarily not every such sys tem has it (see [14, AP, §3]). In 

the present  pape r  we are interested in a s t ronger  s ta tement :  we want  to have the 

U P  for all ladder sys tems on S (i.e., P r s ) .  

We work most ly  wi thout  large cardinals.  First  we concentra te  on the case 

when ~; = A+, A a regular  cardinal,  and then we deal with the related prob lem 

for inaccessible n. The  following five cases should be t rea ted  somewhat  separately.  

CASE A: ~ = A+, /~ = / ~ < x  S C_ S~,, and the set S~, \ S is s ta t ionary;  
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CASE B: 

singulars; 

CASE C: 

CASE D: 

n is (strongly) inaccessible (e.g., the first one), S is a "thin" set of  

)~+ 
A is singular,  S C_ Scf(~ ) is a non-reflecting s ta t ionary  set; 

is s t rongly inaccessible, the set 

{5 < n : 5 E S and 5 is not s t rongly inaccessible} 

is not s ta t ionary;  

C A s E E :  S = S ' ~ , ~ ; = A  + , A = A  <~. 

We may  also consider 

CASE F: ~ = ~<~, 0 + < ~ = 2 °. 

CASE G: S = S~, u = A +, A = A <a and we make 2 a > n. 

In the present  paper  we will deal with the first two (i.e., A and B)  cases. The  

other  cases will be considered in subsequent  papers,  see below. 

Note tha t  ~}s excludes the Uniformizat ion P rope r ty  for sys tems on S, in fact 

is a s t rong negat ion of it. Consequently,  we have some immedia te  l imitat ions 

and restrictions. Because of a theorem of Jensen, in case B we have to consider 

S C_ n which is not too large (e.g., not reflecting). In the context  of case C,  one 

should r emember  tha t  by Gregory  [4] when A is regular,  and by [11] generally: if 

k <~ = A or A is s t rong limit singular, 2 x = h + and S C_ {6 < A + : cf(5) ¢ of(A)} 

is s ta t ionary,  then ~ s  holds true. 

By [12, §3], if A is a s t rong limit singular cardinal,  2 ~ = A +, [Bx and S C 

{5 < A + : cf(~) = ef(A)} reflects on a s ta t ionary  set, then (}s holds; more results 

in this direction can be found in D~amonja  and Shelah [1]. 

In the cases A,  E,  G we are assuming tha t  A <a = A. We will s ta r t  wi th  the 

first (i.e., A)  case which seems to be easier. The  forcing notions which we use will 

be quite complete,  mainly  "outside" S (see A.I .1,  A.1.7, A. l .16 below). Having 

this amount  of completeuess we will be able to put  weaker requirements  on the 

forcing notion for S. 

Finally, note tha t  we cmmot  expect  here a full parallel of properness  for A = R0, 

as even for A+-cc the parallel of F S  i terat ion preserves  ccc fails. 

We deal here with cases A and B; some others will appea r  in Pa r t  II,  [17], 

[16]. For i terat ing (< A)-complete forcing notions possibly adding subsets to A, 

= A +, see [16]; if A is s t rongly inaccessible, see more  in [19]; bo th  are in case 

G. In [17] we show a weaker u+-cc (parallel to pie, eec in [17, Ch. VII ,  VIII])  

suffices. We also show tha t  for a s t rong limit singular A cardinal  and a s t a t ionary  
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A+ set S C_ Scf(~), Pr5 (the uniformization for S) fails, but it may hold for many 

S-ladder systems (so we have consequences for the Whitehead groups), all this 

in case C; see more in [20]. 

This paper is based on my lectures in Madison, Wisconsin, in February and 

March 1996, and was written up by Andrzej Rostanowski to whom I am greatly 

indebted. 

0.1. BACKGROUND: ABELIAN GROUPS. We try to be self-contained, but for 

further references see Eklof and Mekler [2]. 

Definition 0.3: 

I. An Abelian group G is a Whitehead group if for every homomorphism 

h: H ont~ G from an Abelian group H onto G such that  Ker(h) TM Z there 

is a lifting g (i.e., a homomorphism g : G ---+ H such that  h o g = idc).  

2. Let h: H ) G be as above, G1 be a subgroup of G. A homomorphism 

g: G1 > H is a lifting for G1 (and h) if h o gl = idG~. 

3. We say that  an Abelian group G is a direct sum of its subgroups (Gi : i C J)  

(and then we write G = ~ i e J  Gi) if 

(a) G -- ([.JieJ Gi)G (where for a set A C_ G, (A)¢ is the subgroup of G 

generated by A; (A)¢ = {)-~e<k aexe : k < w, ae E Z, xe E A}), and 

(b) G~ ~ ([.Ji#j Gj)¢ = {06} for every i G J.  

Remark 0.4: Concerning the definition of a Whitehead group, note that  if h : 

H ~ G is a homomorphism such Ker(h) = Z and H = Z ~ H1, then h [ HI  is 

a homomorphism from H1 into G with kernel {0} (and so it is one-to-one, and 

"onto"). Thus h[H1 is an isomorphism and g ~ f  (h[H1) -1 is a required lifting. 

Also, conversely, if g : G ~ H is a homomorphism such that  h o g = idG, 

then H = Z + giG]. 
The reader familiar with the Abelian group theory should notice that  a group 

G is Whitehead if and only if Ext(G, Z) = {0}. 

PROPOSITION 0.5: 

1. I f  h: H ont~ G is a homomorphism, G1 • Gs C_ G and ge is a lifting for Ge 

(for f -- 1, 2), then there is a unique lifting g for G~ ~ G2 (called (gl,g2)) 

extending both gl and g2; dearly g(xl + x2) -- gx(xl) + g2(x2) whenever 

xl  E G1, x2 E G2. 

2. Similarly for ~ j  G~, gi a lifting for Gi. 

3. If h: H o~t~ G, Ker(h) ~ Z and GI C G is isomorphic to Z (or just is free), 

then ~here is a lifting for G1. 
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(-j) 
(d) G is 

free. 

Definition 0.6: Let ~ be an uncountable  cardinal,  and let G be an Abel ian group. 

(a) G is free if and only if G = ( ~ i e J  Gi where each Gi is isomorphic to Z. 

(b) G is ~-fl'ee if its every subgroup of size < ~ is fi'ee. 

(c) G is strongly ,~-fi'ee if for every G '  C_ G of size < A there is G "  such tha t  

G '  C_ G"  C_ G and [G"I < A, 

G "  is free, 

GIG" is k-free. 

almost free in k if it is s t rongly k-free of cardinal i ty k but  it is not 

Remark 0.7: Note tha t  the strongly in 0.6(d) does not have much influence. In 

part icular ,  for s inaccessible, "strongly n-free" is equivalent to "n-free". 

PROPOSITION 0.8: Assume GIG" is ~-free. Then for every K c_ G, lie[ < A 

there is a free Abelian group L c_ G such that K C_ G" ~ L C_ G. 

Definition 0.9: Assmne tha t  h; is a regular cardinal.  Suppose tha t  G is an ahnost  

free in h- Abelian group (so by 0.6(d) it. is of size s) .  Let, G = (Gi : i < ~) be a 

f i l trat ion of G, i.e., (Gi  : i < s) is an increasing continuous sequence of subgroups 

of G, each of size less than  h" with union G. We define 

7(C;) = {i < h': G/Gi is not ~-free}, 

and we let P[G] = 7 ( G ) / D ~  for any fi l tration C,, where D~ is the club filter on 

(see [2]); it is well defined. 

PROPOSITION 0.10: Suppose that G, n and (Gi : i < s)  are as above. 

1. G is free if  and onLr i r e ( G )  is not stationary. 

2. ?,[G] cannot reflect in inaccessibles. 

The problem which was the raiso,z d'etre of the paper  is the following question 

of GSbel; this is answered in B.8.5. 

G6bel's question 0.11: Is it. consistent with G C H  that. for some regular cardinal  

s we have: 

(a) every ahnost  free in ~ Abelian group is Whi tehead,  and 

(b) there are ahnost  free in s Abelian groups ? 

Remark 0.12: The point  in 0.11(b) is tha t  wi thout  it we have a too easy solution: 

any weakly compac t  cardinal will do the job. This  demand  is supposed to be 

a complement  of GSbel Shelah [3] which proves tha t ,  say for s = R~, there are 

(under GCH)  ahnost  free in s groups H with H O M ( H ,  Z) = {0}. 
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Now, s ta r t ing  with  n s t rongly inaccessible, S C_ n s ta t ionary  non-reflecting, 

and 6 C S ~ cf(5) = l% for simplicity, after  a forcing extension, as in B.8.2 (with 

g~ = g0[S]), by B.6.10: 

(a) '  every a lmost  free in n Abel ian group G with r[a] c S/Oh is Whi tehead,  

(b) '  there are a lmost  free in n Abelian groups H with r[g] C S/D~ (we can 

get this even for lower n's).  

I t  can be argued tha t  this answers the question if we unders tand it as whether  

from an a lmost  free in n Abelian group we can build a non-Whi tehead  one, so 

the further  restr ict ion of the invariant  to be C S does not influence the answer. 

However, we can do bet ter .  Star t ing with a weakly compac t  cardinal  n we can 

manage  tha t  in addit ion to (a) ' ,  (b) '  we have (see by B.8.5): 

(b) + (i) every s ta t ionary  subset  of n \ S reflects in inaccessibles, 

(ii) for every a lmost  free in n Abelian group H ,  r[H] c_ S/D~. 
(In fact, for an uncountable  inaccessible n, (i) implies (ii).) So we get a consis- 

tency proof  for the original problem. This will be done here. 

We may  ask, can we do it for small  cardinals? Successor of singular? Successor 

of regular? For many  cardinals s imultaneously? We may  get consistency and 

Z F C + G C H  information,  but  the consistency s t rength  is never small. T h a t  is, we 

need a regular cardinal  ~ and a s t a t ionary  set S C_ n such tha t  we have enough 

uniformizat ion on S. Now, for a Whi tehead  group G: if G = (Gi : i < n} is 

a fi l tration of G, S = 7(G),  Ai = [Gi+I/G~[ for i C S, for simplicity Ai = A, 

then we need a version of Prs ,x  (see Definition 0.2(4)). We would like to have a 

suitable reflection (see Magidor  and Shelah [6]); for a s ta t ionary  S I C_ n \ S this 

will imply 0 #.  See more  in [17]. 

0 .2  BACKGROUND: FORCING. Let us review some basic facts concerning 

i te ra ted  forcing and establish our notat ion.  Firs t  r emember  t ha t  in forcing 

considerations we keep the convention tha t  

a stronger condition (i.e., carrying more information) is the larger one. 

For more background than  presented here we refer the reader to either [14] or 

Jech [5, Ch. 4]. 

Definition 0.13: Let ~ be a cardinal  number.  We say tha t  (} is a (< ~)-support 

iteration of length ~ (of forcing notions Q~) i f Q  = (]P~,Q~ : a  <_ 7, I3 < 7} and 

tbr every a _< 7, /3 < 7: 

(a) P~ is a forcing notion, 

(b) Q~ is a PC-name for a forcing notion with the min imal  element 09 ,  

[for simplicity we will assume tha t  Qz is a par t ia l  order on an ordinal  or 
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just  a set of old elements (from V, not I?/~); remember  tha t  each part ial  

order is isomorphic to one of this form], 

(c) a condition f in IP~ is a part ial  function such tha t  d o m ( f )  c_ c~, II d°m(f) l l  
< ~; and 

(g( E d o m ( f ) ) ( f ( ( )  is a P~-name and I~-e¢ f ( ( )  E Q~) 

[we will keep a convention that  if f E IPa, { E c~ \ dora ( f )  then f (~)  = 09¢ ; 

moreover, we will assume tha t  each f (~)  is a canonical name for an ordinal, 

i.e., f (~)  = {(qi, ~/i): i < i*} where {qi:  i < i*} C_ F~ is a maximal  antichain 

of P~ and for every i < i*: 7i is an ordinal and qi It-ee " f ({)  = 7i"], 

(d) the order of P+ is given by 

f l  _<~ f2 if and only if (V( ~ o~)(f2[~lt-pe f t ( ( )  -<ge f2(()) .  

Note tha t  the above definition is actually an inductive one (see below too).  

R e m a r k  0.14: The  forcing notions which we will consider will satisfy no new 

sequences of  ordinals of  length < t~ are added, or maybe  at  least any new set of 

ordinals of cardinality < n is included in an old one. Therefore,  there will be no 

need to consider the revised support  iterations. 

Let us recall that:  

FACT 0.15: Suppose Q = (P~,Q/3 : ~ _< 7 , / 3  < 7} is a (< n)-support  i teration, 

/ 3 < a < _ 7 .  Then  

(a) p E lP~ implies p [13 E ~l~, 

(b) e~ c_ e~,  

(c) _%~=_%o t~'~, 
(d) if p E 1~, p[/3 <-~'~3 q E P/~ then the conditions p, q are compatible in IP~; in 

Net q Up[[/3, ct) is the least upper bound of p, q in Po, 

consequently 

(e) P~ ~ ~ (i.e., complete suborder).  

FACT 0.16: 

1. If 1~ = {P~,, Q/~ : (v _< 7, /;~ < 7} is a (< ~)-support  i terat ion of length 7, Q~ 

is a P~-name for a forcing notion (on an ordinal),  then there is a unique 

I?~+~ such that  {P~, _Q9 : c~ _< "y+l ,  /3 < 7+1}  is a (< n)-support  i teration. 

2. If (7i : i < 5} is a strictly increasing continuous sequence of ordinals 

with limit "~a, a is a limit ordinal, and for each i < 5 the sequence 

(P~,_QI~ : ~ <- ")'i, /4 < ~ti} is a (< n)-support  i teration, then there is a 
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unique P~ such that (P~, QZ : a < 3`5, /~ < 3`5} is a (< n)-support itera- 

tion. 

Because of Fact 0.16(2), we may write Q -- (Pa, Q~ : c~ < 3`} when considering 

iterations (with (< n)-support), as P~ is determined by it (for "~ --/3+1 essentially 

P~ = P~ * Q~). For 7' < 3" and an iteration Q = (P~, Q~:  c~ < 3`) we let 

Qr3`'  = : < 3`'}. 

FACT 0.17: For every function F (even a class) and an ordinal 3  ̀ there is a 

unique (< ~)-support iteration (} = (P~, Q~ : c~ < 3`'}, 3`' _< 3  ̀such that Q~ = 

F(Q[c~) for every a < 3`' and 

either 3̀~ = ~ or F(Q) is not of the right form or both. 

For a forcing notion Q, the completion of Q to a complete forcing will be 

denoted by Q (see [14, Ch. XIV]). Thus Q is a dense suborder of Q and in 1} any 

increasing sequence of conditions which has an upper bound has a least upper 

bound. In this context note that  we may define and prove by induction on (~* 

the following fact. 

FACT 0.18: Assume /pi ~,  ~ , ~  : a < c~*) is a (< n)-support iteration. Let P~, 

Q~ be such that for a < a* 

1. P~ = {f  C P~:  (V( < a)(f(~) is a PC-name for an element of Q¢)}, 

2. Q~ is a P~-name for a dense suborder of Q~. 

Then for each a _< a*, I?~ is a dense suborder of P~ and (P~, 9~ :c~ < c~*} is 

a (< n)-support iteration. 

We finish our overview of basic facts with the following observation, which will 

be used several times later (perhaps even without explicit reference). 

FACT 0.19: 1) Let Q be a forcing notion which does not add new (<0)-sequences 

of elements of A (i.e., I~-Q"A <° = A <° N V ' ) .  Suppose that N is an elementary 

submodel of (7-/(~(),C,<~) such that IINll = A, Q E N, and N <° C_ N. Let 

G c_ Q be a generic filter over V. Then 

V[G] ~ X[V] <° C_ N[G]. 

2) If (9 e 7-/(X) and O E N < (7-/(?(), C), and G c O is generic over V, 

then N[G] < (7-/(X), a ) [a ] ;  similarly for (7-/(~:), e,  <~) and clearly 7-/()¢) VIal = 

Proof: 1) Suppose that 2 =  (xi : i  < i*} E N[G] <°,i* < 0. By the definition 

of N[G], for each i < i* there is aQ-name ri  c N such that a'i = ria. Look 
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at  the sequence <ri : i < i*> E V[G]. By the assumpt ions  on Q we know tha t  

<r i :  i < i*} E V ( remember  i* < 0, IINII = ~) and therefore, as each r i  is in N 

and N <° C_ N ,  we have <ri : i < i*> E N.  This  implies tha t  :> E N[G]. 

2) Also easy. | 

0.3. NOTATION. We will define several propert ies  of  forcing notions using the 

s t ructure  (~(Jt) ,  E, <~) (where 7-/(~) is the family of sets hereditari ly of size less 

than  \ ,  and <~ is a fixed well ordering of 7-/(\)). In all these definitions any 

"large enough" regular  cardinal  ~, works. 

Definition 0.20: For most  N -< (7-/(-(), E, <~) with P R O P E R T Y  we have. . ,  will 

nl e an: 

there is z E ~ ( \ )  such tha t  

i f z  E N -< ( ~ ( ' t ) ,  E, <~) and N has the P R O P E R T Y ,  then . . . .  

Similarly, for  most sequences N = <Ni : i < a> of e lementary submodels of 

(7-/(\), E, <~) with P R O P E R T Y  we h, ave . . ,  will mean: 

there is .r E N ( \ )  such tha t  

if x E No, 2V = <Ni : i < a),  Ni -~ (H(X), E, <~)  and 2~ r has the 

P R O P E R T Y ,  then . . . .  

In these si tuat ions we call the element x E ?-l(\) a witness. 

Notat ion 0.21: We will keep the following rules for our notat ion:  

1. re,/L "}, & ~, ~, i, j . . . .  will denote  ordinals, 

2. ~, A, p,, p*, -~ . . . .  will s tand for cardinal  numbers ,  

3. a bar  above a name indicates tha t  the object  is a sequence; usually ,{" will 

be (Xi : i < gg(X)),  where (q (X)  denotes the length of X ,  

4. a tilde indicates tha t  we are dealing with a name for an object  in a forcing 

extension (like :~'), 

5. S, Si, S~, E ,  Ei,  E j . . . .  will be used to denote sets of ordinals,  

6. `5, ,5i, ,5], •, gi, ~'j . . . .  will s tand for fanfilies of sets of ordinals of size < ~, 

and finally 

7. S, S~, , ~ ,  d, ~i, gJ will s tand for families of sequences of sets of ordinals of 

size < n. 

8. The  word group will mean  here Abel ian group. In groups we will use the 

addit ive convention (so, in part icular ,  0a  will s tand  for the neutra l  element 

of the group G). G, H,  K,  L will denote (always Abelian) groups. 
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Case A 
In this part of the paper we are dealing with Case  A (see the introduction), so 

naturally we assume the following. 

Our Assumptions 1: A, ~, #* are uncountable cardinal numbers such that 

A <~ -- A < A + = 2 ~ = ~ < #*. 

We will keep these assumptions for some time (unless stated otherwise) and we 

may forget to remind the reader of them. 

A.1. Complete forcing notions 

In this section we introduce several notions of completeness of forcing notions 

and prove basic results about them. We define when a forcing notion Q is: 

(tO, S)-strategically complete, (< A)-strategically complete, strongly S-complete, 

(S0,S1)-complete, basically (S0, S1)-complete and really (So,S1,D)-complete. 

The notions which we will use are strong S0-completeness and real (S0,,~l, D)- 

completeness, however the other definitions seem to be interesting too. They are, 

in some sense, successive approximations to real completeness (which is as weak 

as the iteration theorem allows) and they might be of some interest in other 

contexts. But a reader not interested in a general theory may concentrate on 

definitions A.l . l (3) ,  A.1.5, A.1.7(3) and A.l.16 only. 

Definition A.I.I:  Let Q be a forcing notion, and let tO be an ordinal and S C tO. 

1. For a condition r C Q, let C°(Q, r) be the following game of two players, 

COM (for complete) and INC (for incomplete): 

the game lasts 0 moves and during a play the players construct a 

sequence <(Pi, qi) : i < 0} of conditions from Q in such a way that 

(Yj < i < O)(r <_ pj <_ qj <_ Pi) and at the stage i < 0 of the game: 

if i E S, then COM chooses Pi and INC chooses qi, and 

if i ~ S, then INC chooses Pi and COM chooses qi. 

The player COM wins a play if and only if during the play, for every i < 0, 

there are legal moves for both players. 

2. We say that the forcing notion Q is (0, S)-strategically complete if the player 

COM has a winning strategy in the game C°(Q, r) for each condition r E Q. 

We say that Q is strategically (< O)-complete if it is (0,0)-strategically 

complete. 

3. We say that the forcing notion Q is (< O)-complete if every increasing 

sequence <qi : i < ($} C Q of length a < 0 has an upper bound in Q. 
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PROPOSITION A.1.2: Let Q be a forcing notion. Suppose that 0 is an ordinal 

and S C_ O. 

1. I f  Q is (< 8)-complete, then it is (O, S)-strategically complete. 

2. I f  S' c_ S and Q is (O,S')-strategically complete, then it is (8, S)- 

strategically complete. 

3. I f  Q is (0, S)-strategically complete, then the forcing with Q does not add 

new sequences of ordinals of length < O. 

Proob 1) and 3) should be clear. 

2) Note that if all members of S are limit ordinals, or at least a C S 

a +  1 ~ S, then one may easily translate a winning strategy for COM in G °, (Q, r) 

to the one in G~(Q, r). In the general case, however, we have to be slightly more 

careful. First note that we may assume that 0 is a limit ordinal (if 0 is not limit 
o+w consider the game ~s (Q,r)).  Now, for a set S _C 0 and a condition r E Q we 

define a game .~O(Q, r): 

the game lasts 0 moves and during a play the players construct a 

sequence (Pi : i < 0> of conditions fi'om Q such that r <_ Pi <_ Pj for 

each i < j < 0 and 

if i • S, then Pi is chosen by COM, 

if i ~ S, then p~ is determined by INC. 

The player COM wins if and only if there are legal moves for each 

i < O .  

Note that, clearly, if S' C_ S C 0 and Player COM has a winning strategy in 

*C°'s ~/~ r), then it has one in *G~(Q, r). 

F o r a s e t S C _ 0 1 e t  S ± = {2a : a • S} to {2a + l : a • O \ S}. (Pla in lyS ± C_ O 

as 0 is limit.) 

CLAIM A.1.2.1: For each set S C_ 0 the games G~(Q,r) and *G~±(Q,'r) are 

equivalent O.e., COM/INC has a winning strategy in ~ ( Q ,  r) if  and only if  it 

has one in *~% (Q, ~)]. 

Proof of the claim: Look at the definitions of the games and the set S ±. | 

CLAIM A.1.2.2: Suppose that So, $1 c_ 0 are such that for every non-successor 

ordinal 5 < 0 we have 

(a) a • So - a • s , ,  

(b) (~oo~ • oo)(6 + ~ • So), ( ~  • ~)(6 + ,~ ¢ So), (3°% • ~)(6 + n • s,) ,  
and (~°°n • 02)(5 + ?'t ~ 81). 
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Then the games *G o So (Q' r) and *G°I (Q, r) are equivalent. 

Proof of the claim: Should be clear once you realize that finitely many successive 

moves by the same player may be interpreted as one move. | 

Now we may finish the proof of A.1.2(2). Let S I C S C 0 (and 0 be limit 

ordinal). Let 

S* = {~ E S ± : 5 is not a successor} U {5 E ($1) ± : 5 is a successor}. 

Note that (S') ± C_ S* and the sets S*, S ± satisfy the demands (a), (b) of A.1.2.2. 

Consequently, by A.1.2.1 and A.1.2.2: 

Player COM has a winning strategy in C°., (Q, r) =~ 
• 0 Player COM has a winning strategy in G(s,)l (Q, r) 

Player COM has a winning strategy in *G°. (Q, r) 
• 0 Player COM has a winning strategy in Gs± (Q, r) 

Player COM has a winning strategy in G°(Q, r). | 

PROPOSITION A.1.3: Assume ~ is a regular cardinal and 0 < n. Suppose that 
= (P~,Q~ : ct < 7> is a (< ~)-support iteration of (< O)-complete ((O,S)- 

strategically complete, strategically (< 0)-complete, respectively) forcing notions. 
Then P~ is (< O)-complete ((0, S)-strategically complete, strategically (< 0)- 

complete, respectively). 

Proof: Easy: remember that union of less than ~ sets of size less than n is of 

size < ~, and use A.1.2(3). | 

Note that if we pass from a (< A)-complete forcing notion Q to its completion 

l} we may lose (< A)-completeness. However, a large amount of the completeness 

is preserved. 

PROPOSITION A.1.4: Suppose that Q is a dense suborder of ~ .  
1. If  Q is (< A)-complete (or just (< A)-strategically complete) then ~ is 

(< k )-strategically complete. 
2. If ~ is (< A )-strategically complete then so is Q. 

3. Similarly, in (2) for (k, S)-strategically complete. 

Proof: 1) We describe a winning strategy for player COM in the game G~(Q', r) 

(r E Q~), such that it tells player COM to choose elements of Q only. So 
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at stage i < A of the play, COM chooses the <x-first condition qi E Q 

stronger than Pi C ~ chosen by INC right before. 

This strategy is a winning one, as at a limit stage i < A of the play, the sequence 

(qj : j < i) has an upper bound in Q (remember Q is (< A)-complete). For the 

(< k)-strategically complete case, COM simulates a play for Q by choosing for 

each choice of I N C a  stronger condition which belongs to Q. 

2), 3) Even easier. | 

Definit ion A.1.5: 

1. By D<~,<~(#*) we will denote the collection of all families $ C_ [#*]<~ such 

that for every large enough regular cardinal ,~, for some x C 7-/(k) we have 

if x C N --< (7-/(~t),E, < , ) ,  IINII < n, N <~ C_ N and N n ~ is an 

ordinal, then N n #* C $ (compare with A.1.7). 

2. By D~ ,<~(#*)  we will denote the collection of all sets S such that 

,~ c_ {~ = ((ti : i  _< cu) : the sequence 0~ is increasing continuous and 

each (ti is from [p*]<~} 

and for every large enough regular cardinal ,~, for some x E 7-/(,() we have: 

if 27 = (Ni : i <_ ce) is an increasing continuous sequence of models 

such that x C No and for each i < j <_ c~: 

Ni -'< N j  -.< (~( - , ) , e ,<X) ,  (Ng : ~ <_ j )  E Nj+I ,  IINjl[ < ~, 

Nj Cl t~ C h; and 

j is non-limit ~ Nj <x C_ Nj, 

then (Ni n #* : i <_ c~) c ,5. 

3. For a family D C_ 7~(X) (say 2( = U x s ~  X) let D + stand for the family of 

all S C X such that 

(VC ~ D ) ( S n C  ¢ 0). 

[So D + is the collection of all D-positive subsets of X.] 

4. For ,5 E (D<~,<x(#*)) + we define D~,<x(l**)[,5 ] like D ~ , < x ( # *  ) above, 

except that. its members ,~ are subsets of 

{~ = (ai : i _< ct) : g is increasing continuous and for each i < a, 

ai C [/**]<~ and if i is not limit then ai c ,9}, 
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and, naturally, we consider only those sequences f i / =  <Ni : i < a)  for which 

i _< a is non-limit => Ni M #* E S. 

As A is determined by ~ in our present case we may forget to mention it. 

Remark  A. 1.6: 

1. These are normal filters in a natural sense. 

2. Concerning ~ , < ~ ( p * ) ,  we may not distinguish ~o, ~l which are similar 

enough (e.g., see A.l.16 below). 

3. Remember: our case is GCH, A = cf(A), n = A + and a = A. 

Deth~ition A.1.7: Assume S c_ [p*]-<~. 

1. Let ,k be a large enough regular cardinal. We say that  an elementary 

submodel N of (7/(),), E, <~) is (A, S)-good if 

] INII=A,  N <: 'C_N, a n d N N # *  E S .  

2. We say that  a forcing notion Q is strongly S-complete if for most (see 0.20) 

(A, S)-good elementary submodels N of (7-/(~), E, <x) such that  Q E N and 

for each Q-generic over N increasing sequence t5 = <Pi : i (. A> C Q VI N 

there is an upper bound of/5 in Q. 

[Recall that  an increasing sequence/5 = (Pi : i < A) C_ Q n N is Q-generic 
over N if for every open dense subset :/: of Q from N for some i < A, pi E •.] 

3. Let N -< (7-/();), E, <~) be (A, S)-good. For a forcing notion Q, a set S c_ A 

and a condition r E Q N N we define a game ~TN,S(Q, r) like the game 
A+I  ~s (Q, r) with an additional requirement that  during a play all choices 

below A have to be done from N, i.e., p~,qi E N N Q  for all i < A. 

If S = 0 then we may omit it. 

4. Let S: S > T'(A). We say that  a forcing notion Q is (S, S)-complete if 

for most (A, S)-good models N, for every condition r E N n Q the player 

COM has a winning strategy in the game ~N,S(NvI#*)(Q, r). 

If  5:(a) = 0 for each a E S then we write S-complete. (In both cases we may 

add "strategically".) If S(a) = S for each a E S, then we write (S, S)-complete. 

Remark A.1.8: In the use of most in A.1.7 (and later) we do not mention 

explicitly the witness x for it. And, in fact, normally it is not necessary. If 

~l, X are large enough, 2 <'1 < ~ (so 7-/(~(1) E 7-/()~)), $,  Q . . . .  E N, then there is 

a witness in 7-/(:~1) and, without loss of generality, ~'(1 E N and therefore there is 

such a witness in N. Consequently we may forget it. 
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Remark  A.1.9: 
1. The most popular choice of #* is n; then S E (~<~,<x(p*))+ if and only 

if the set {(~ < ~ : cf((~) = A & d E S} is stationary. So S "becomes" a 

stat ionary subset of t~, 

2. Also here we have obvious monotonicities and implications. 

PROPOSITION A.I .10:  Suppose that S E (~<~,<~(p*))+ and a forcing notion Q 

is S-complete. Then the forcing with Q adds no new A-sequences of ordinals (or, 

equivalently, of elements of V) and I F-Q "S E (~  <~,<,\ (#*)) + ". 

Proof: Standard; compare with the proof of A.l.13. | 

PROPOSITION A. 1.11: 

1. Let ,_q C [/z*] <-~. Iira forcing notion Q is strongly ,S-complete and is (< A)- 

complete, then it is S-complete. 

2. Ira forcing notion Q is strongly S-complete and is S-strategically complete, 

then Q is (S, S)-complete. 

Strong S-completeness is preserved if we pass to the completion of a forcing 

notion. 

PROPOSITION A.1.12: Suppose that S C_ [p,]_<x and Q is a dense suborder of 
(~. Then 

1. (~ is strongly S-complete if and only if Q is strongly S-complete, 
2. similarly for ( S, S)-completeness. 

Proof." 1) Assume Q~ is strongly S-complete and let x '  E 7 / ( \ )  be a witness 

for the "most" in the definition of this fact. Let x = @',Q~>. Suppose that  

N -< ( ~ ( \ ) , E , < ~ )  is (A,S)-good and Q,x  E N. Then Q' , : r '  E N too. Now 

suppose that  q = {q.i : i < A} C_ Q c~ N is an increasing Q-generic sequence over 

N. Since Q is dense in Q',  q is ~-gener ic  over N and thus, as Q' is strongly 

S-complete, it has an upper bound in Q~ (and so ill Q). 

Now suppose Q is strongly S-complete with a witness x E ~/('<) and let z ~ = 

<x,Q>. Let N be (A,S)-good and Q~,x' E N. So Q,x  E N. Suppose that  

~7 = <qi : i < %> C_ Q~ N N is increasing and Q'-generic over N. For each i < A 

choose a condition Pi E Q A N and an ordinal c;(i) < A such that  

qi <_Q' Pi <_Q' q~o(i) 

(possible by the genericity of (]; remember that  q is increasing). Look at the 

sequence 

(pi:  i < A & (W < i ) (~( j )  < i)}. 
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It is an increasing Q-generic sequence over N, so it has an upper bound in Q. 

But this upper bound is good for ~ in Q/ as well. 

2) Left to the reader. | 

PROPOSITION A. l . 13 :  Suppose that Q = (Pa, _Q,~ : a < 7) is a (< n)-support 
iteration, S E V,  S c (~<~,<:~(#*))+. 

1. If  for each a < 7 

IFp. ' ~  is strongly S-complete", 

then the forcing notion P3 is strongly S-complete (and even each quotient 

PZ/P~ is strongly S-complete for a <_/3 <_ 3"). 
2. Similarly for (S, S)-completeness. 

Proof: 1) The proof can be presented as an inductive one (on 3'), so then we 

assume that  each P~ (a < 3') is strongly S-complete. However, the main use of 

the inductive hypothesis will be that  it helps to prove that  no new sequences of 

length A are added (hence A is not collapsed, so in V ~ (for a < 3') we may talk 

about  (A, S)-good models without worrying about the meaning of the definition 

if A is not a cardinal, and N[G~] is (A, S)-good). 

For each a < ff and p E Pa fix a ]Pa-name f~ for a function from A to V such 

that  

i f p  IFe "there is a new function from A to V" ,  

then p IFe. "f~ ~ V" ,  and otherwise p IFe~"f~ is constantly 0". 

Let 

Zo = {p C Pa : either p IFp. "there is no new function from A to V" 

or p l F ~  f~  ¢ V}. 

Clearly I s  is an open dense subset of P~. Let x~ (for c~ < 3`) be a ~ - n a m e  for 

a witness to the assumption that  IF~"Q~ is strongly S-complete ' .  Let 

Suppose that  N is (A, S)-good, P.~, x E N and p is a P~-generic sequence over N. 

Note that  Q E N. We define a condition r* C Pz: 

we let dora(r*) = N A 3' and we inductively define r*(a)  for c~ E dom(r*) by 

if there is a ]P~-name T such that  

r*Ia IF~. "T E Q~ is an upper bound to (pi(a) : i  < A}", 
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then  r*(a)  is the <~-firs t  such a name; 

if there is no r as above, then r* (a )  = 0 (~ .  

I t  should be clear that. r* E ?~ (as IINI[ -- A < ~). W h a t  we have to do is to 

show tha t  r* is an upper  bound to t5 in P~. We do this by showing by induction 

on a _< 7 tha t  

(G~) for each i < A, p i [c~ _<p~ r* [a. 

For a = 0 there is nothing to do. 

For a limit this is immedia te  by the induction hypothesis.  

If  a = /3 + 1 and /3 ~ N,  then we use the induction hypothesis  and the fact 

tha t  for each i < A, dom(pi)  c_ ? ~ N ( remember  Pi ~ ~ ~ N, )~ C N and 

II dom(pi)][ < A). 

So we are left with the case c~ = /3 + 1, /3 ~ N.  Suppose tha t  G~ _c I?~ is 

a generic filter over V such tha t  r* I/3 ~ G3 (so necessarily p/I/3 E G/~ for each 

i < A). We will break  the rest of the proof  into several claims. Each of t hem has 

a very s tandard  proof, but  we will sketch the proofs for the reader ' s  convenience. 

R e m e m b e r  tha t  we are in the case/3 ~ N,  so in par t icular  P~, P/3+1, x/3, ://3 ~ N 

and (Pi I/3 : i < A) C_ N is a IF~-generic sequence over N.  

CLAIM A.1.13.1:  r* I/3 I~-e¢ "there is no new function from A to V " .  

Proof  of  the claim: Since Z~ C N is an open dense subset  of P3 we know 

tha t  Pi [/3 C Zfl for some i < A. If the condit ion Pi [/3 forces tha t  "there is no new 

function from A to V " ,  then we are done (as r* [/3 _> Pi I/3). So suppose otherwise. 

,, ,e/~ V " .  Then  Pi r/3 I~-~ ~p~ ~ ~ But ,  as fl, p~ C N,  clearly/3,  Pi Ifl E N and we have 

fp~r~ C N and therefore for each ( < A there is j < A such tha t  the condit ion 

pj [fl decides the value of f/i~i/~(~ ). Consequent ly  the condit ion r* Ifl decides all 

values of fp~ t/~' so r* F/fl It-~ f/~ _ _ p~ t~ C V,  a contradict ion.  I 

CLAIM A.1.13.2:  N[G/~] N V = N (so N[GI3] N p.* E S) .  

Proof  of  the claim: Suppose tha t  r E N is a IPfl-name for an element, of V.  As 

the sequence (Pi [/3 : i  < )~) is Pz-generic over N,  for some i < A, the condit ion 

Pi K2 decides the value of the name 2. Since Pi F/3 E N the result of the decision 

belongs to N ( remember  the e lementar i ty  of N)  and hence Tae E N.  l 

CLAIM A . I . 1 3 . 3 :  

IIN[G  ][I = A, N[G ] c N[G ] and N[G ] -< < )vIa l. 
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Co.sequent y, Vial] "t e moda N[a ] is (),, S)- ood a .d  • 

Proof  of  the claim: Names for elements of N[G~] are from N, so clearly IIN[Gz]II 

= A = IIxl{. It follows from 0.19 and A.1.13.1 that NIGh] <x c_ NIGh]. To cheek 
that N[G~] is an elementary submodel of (J-/(X), e, <,*) (in V[Gz]) we use the 

genericity of (Pi I/~ : i < A) and the elementarity of N: each existential formula 
of the language of forcing (with parameters from N) is decided by some pi [/3. If 

the decision is positive, then there is in N a name for a witness for the formula. 

So we finish by the Tarski-Vaught criterion (or use 0.19(2)). | 

CLAIM A . 1 . 1 3 . 4 :  

V[Gz] ~ "(p/(/3) a~ : i < A} is an increasing 9~Z-generic sequence over N[Gz]" 

Proof  of  the claim: By the induction hypothesis, the condition r* {/3 is stronger 
than all p~ [~ (and ¢ G~). Hence (by Definition 0.13), as p is increasing, the 

sequence <pi(/3) G~ : i  < A) is increasing (in a~ _Q~ ). Suppose now that _27 C N is a 

Pz-name for an open dense subset of _Q~. Look at the set {p E PZ+I : Pl/3 IF-~, 

p(/3) E _2:}. It is an open dense subset of I73+1 fl'om N. But ~ + 1  ~ I?~, so for 

some i < A we have 

finishing the claim. | 

By A.1.13.3, A.1.13.4 (remember we assume I~-~,z "_QZ is strongly ,S-complete") 
we conclude that, in V[G/~], the sequence (pi(/3) a~ : i  < A) C_ _Q~ has an upper 

bound (in a~ _Q3 ). Now, as Gt~ was an arbitrary generic filter containing r* I/3 we 

conclude that there is a ]?~-name T such that 

'r* r/3 It-~,~ "T ¢ _Q~ is an upper bound to (pi(/3) : i < )~)". 

Now look at the definition of r* (/3). 

2) Left to the reader. | 

Definition A.1.14: Let (of course, t~ = A +, and) So C (~<~,<x(p*))+ and '-~1 C 
(~x<~,<~(#*)[So])+. Suppose that  Q is a forcing notion and ~ is a large enough 

regular cardinal. 

1. We say that. a sequence N -- (Ni : i <_ A) is (A, t~, $1, Q)-considerable if 

/~" is an increasing continuous sequence of elementary submodels 

of (7-/(~/),E,<~) such that A 12 {~,n,Q} c No, the sequence 
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( N i N p * : i < A } i s i n S 1  and for e a c h i < A  

[[N/[I < ~ and (N j  : j <_ i) E Ni+l and 

i is non-limit ~ (Ni) <~ C_ Ni. 

49 

2. For a (A, g, $1, Q)-considerable sequence ]V = (Ni : i < A) and a condition 

* i r E No M Q, let GN(Q, ") be the following game of two players, COM and 

INC: 

the game lasts A moves and during a play" the players construct a 

sequence {(Pi, qi) : i < A} such that each Pi is a condition from Q 

and qi = (qi,¢ : ~ < A} is an increasing A-sequence of conditions from 
Q (we may identify it with its least upper bound in the completion 

(}) and at the stage i < A of the game: 

the player COM chooses a condition Pi E N-I+i+I N Q such that 

r _< p~, (Vj < i)(V~ < A)(qj,¢ < pi), 

and the player INC answers by choosing a _<Q-increasing Q-generic 

over N-I+i+I sequence ~]i = (qi,~ :~ < A} c N-I+i+I n Q  such that 

Pi <_ qi,o, and qi C N-1+i+2 .  

The player COM wins the play of ~ ( Q , ' r )  if the sequence {Pi : i < A) 

constructed by him during the play has an upper bound in Q. 

3. We say that the forcing notion Q is basically (So, S1)-coraplete if 

(a) Q is (< A)-complete (see A.l.l(2)), and 

(/3) Q is strongly So-complete (see A.1.7(3)), and 

(7) for most (A, ~,,~1, Q)-considerable sequences N = (Ni : i _< A), for every 
condition r E No A Q, the player INC DOES NOT have a winning strategy 

in the game gT}(Q, r). 

Remark A.1.15: 
1. Why do we have '~strongly S0-complete" in A.1.14(3)(/3) and not "strate- 

gically So-complete"? To help proving the preservation theorem. 

2. Note that if a forcing notion Q is strongly S0-complete and (< A)-complete, 

and /9  is (A, ~, ,~1, Q)-considerable (and No contains the witness for "most" 

in the definition of "strongly So-complete'), then both players always have 

legal moves in the game GN(Q, r). Moreover, if Q is a dense suborder of 

Q' and Q' E No and the player COM plays elements of Q only, then both 
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* r players have legal moves in the game 6~ ( Q ' , ) .  

[Why? Arriving at a stage i of the game, the player COM has to choose a 

condition Pi C N-l+i+l  n Q stronger than all qj,¢ (for j < i, ~ < A). If i is 

a limit ordinal, COM looks at the sequence (pj : j < i} constructed by him 

so far. Since (Ni+l) <~ C Ni+l we have that (pj : j  < i} C Ni+I and, as Q 

is (< A)-complete, this sequence has an upper bound in Ni+l (remember 

that Ni+l is an elementary submodel of (7-/(X), E, <~)). This upper bound 

is good for qj,¢ (j < i, ~ < A) too. I f i  = i o + l ,  then the player COM 

looks at the sequence qio C N-l+io+2 only. It is Q-generic over N-1+io+1, 

Q is strongly So-complete and N-l+io+l is (A, S0)-good. Therefore, there 

is an upper bound to qio, and by elementarity there is one in N-1+io+2. 

Now, the player INC may always use the fact that Q is (< A)-complete to 

build above Pi an increasing sequence qi C_ Q n N-1+i+1 which is generic 

over N-1+~+1. Since N- l+i+t  E N - l + i + 2 ,  by elementarity there are such 

sequences in N-1+i+2. 
Concerning the "moreover" part, note that the only difference is when COM 

is supposed to choose an upper bound to qio- But then it proceeds like in 
A.l.12, reducing the task to finding an upper bound to a sequence (generic 

over N-l+io+l) of elements of Q.] 

Unfortunately, the amount of completeness demanded in A.l.14 is too large 

to capture the examples we have in mind (see the next section). Therefore we 

slightly weaken the demand A.1.14(3)(?) (or rather, we change the appropriate 
game a little). In Definition A.l.16 below we formulate the variant of complete- 

ness which seems to be the right one for our case. 

Definition A.1.16: Let So • (~<~,<~(#*))+ and S1 • (~A(t~,<A(P*)[S0])+" Let 
D be a function such that dora(D) = ,$1 and, for every ~ • S1, 

D(~) = Da is a filter on A. 

Let Q be a forcing notion. 

1. We say that an increasing continuous sequence N = (Ni : i < A} of elemen- 

tary submodels of (7-/()~), • ,  <~.) is (;~, n, S1, D, Q)-suitable if: 

AU {,Ln, Q} c_ No, []Nill < ~, (Nj : j <_ i} e Ni+l and there are fi • $1 

and X • D~ such that, for each i • X, 

(N/+I)  <'~ C_ AT/+ 1 ~ N i + l  1"7 p,* = ai+ 1 

(compare with A.1.14(1)); we can add Ni n #* = ai if Da is normal. 

A pair (8, X) witnessing the last demand on N will be called a suitable base 

for N.  
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2. For a (A, h'~, $1, D, Q)-suitable sequence 29 --- (Ni : i < A), a suitable base 

(a,, X) for /~" and a condition r E No, let. G~,D,X,a(Q, r) be the following 

game of two players, COM and INC: 

The game lasts A moves and during a play the players construct 

a sequence ((Pi, ¢i, (li) : i < A) such that ¢,i E X, p~ E Q and q~ = 
(qi,~ : ~ < A) C_ Q in the following manner. 

At the stage i < A of the game: 

player COM chooses ¢i E X above all Q chosen so far and then it 

picks a condition Pi E N¢~+1 n Q such that 

r <_ Pi, (Vj < .i)(V~ < .~)(qj,( < Pi), 

after this player INC answers choosing a <Q-increasing Q-generic 

over N;~+I sequence qi = (qi,~ : ~ < A) c_ N¢~+1 n Q such that 

Pi ~ qi,o, and qi E N¢~+2. 

The player COM wins the play of G~,D,X,a(Q,r) if {£i : i < A} E Da 

and the sequence (pi : i < A) constructed by him during the play 

has an upper bound in Q. 

We sometimes, abusing our notation, let INC choose just the lub in 

(~ of c7i. 

3. We say that the forcing notion Q is really (So, ,~1, D)-complete if 

(a) Q is (< A)-complete (see A.1.1(3)), and 
(/3) Q is strongly S0-complete (see 1.1.7(3)), and 

('~) for most (A,a, S1,D,Q)-suitable sequences 29 = (Ni : i _< .~}, for 

every suitable basis (a, X) for 29 and all conditions r E No O Q, 

the player INC DOES NOT have a winning strategy in the game 

v,x,  (Q, ")" 

Remark A.1.17: If a forcing notion Q is strongly S0-complete and (< A)- 

complete, and N is (A, ~,:, ,~l, D, (})-suitable (witnessed by (~, X)) then both play- 
cp 

ers always have legal moves in the game ~N,D,X,~( Q, r). Moreover, if Q is dense 

in Q~, Q' E No and COM plays elements of Q only, then both players have legal 
q) 

moves in ~ yC,D,X,a ( ~ , r) 
[Why? Like in 1.1.15.] 

cp 
Remark A.1.18: We may equivalently describe the game ~,D,X,~(Q, r) in the 

following manner. Let (} be the completion of Q. 
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The play lasts ~ moves during which the players construct a sequence 

(Pi, qi : i < A) such that Pi E Ni+l fl (Q u {*}) (where * ~ Q is a 
fixed element of No), q/ E N/+2 M (}. 

At the stage i < ,k of the game, COM chooses Pi in such a way that 

p~ ¢ , ~ i E X Xc (Vi < i)(qj <_Q p~), 

and INC answers choosing qi such that 

if Pi -= *, then qi is the least upper bound of (q/ : j < i) in (}, 

ifpi 5~ *, then qi E Ni+2 Mq~ is the least upper bound of a Q-generic 

filter over Ni+l containing pi. 

The player COM wins if {i < ,k :Pi 7 £ *} E Da and the sequence (p~ : p~ ~ .) 
has an upper bound. 

There is no real difference between A.1.16(2) and the description given above. 

Here, instead of "jumping" player COM puts * (which has the meaning of I am 

waiting) and it uses the existence of the least upper bounds to replace a generic 

sequence by its least upper bound. 

PROPOSITION A.1.19: Suppose that 

So E (~<~,<x(lt*)) + and 31 E (~<~,<~(#*)[So]) + 

and Da is a filter on A for 5 E ,~1. Assume that Q is a dense suborder of ~ , 

is (A, n, $1, D, Q)-suitable (witnessed by (•, X) ) ,  (~ E No. Then for each r E Q: 

the player COM has a winning strategy in ~ ,D,X ,a  (~  , r) (the player 

INC does not have a winning strategy in ~S,D,X,a(Q' r), respec- 

tively) if and only if 

it has a winning strategy in ~ , p , x , a ( ~ / , r )  (the player INC does 
¢p 

not have a winning strategy in ~lg,D,X,a((~, r), resp.). 

r). We Proo[: Suppose that C0M has a winning strategy in 62,D,X,a(Q, 

r) which tells him to play describe a winning strategy for him in ~29,D,X,a(~, 

elements of Q only. The strategy is very simple. At each stage i < ~, COM 

replaces the sequence qi c_ Q~ by a sequence ~* c_ Q which has the same upper 

bounds in Q as ~i, is increasing and generic over N¢~+l. To do this he applies 

the procedure from the proof of A.1.12 (in N¢,+2, of course). Then it may use 

r his strategy from GfC,D,X,a(Q, ). The converse implication is easy too: if the 

winning strategy of COM in ~lg,D,X,a((~, r) tells him to play ~/,pi then he puts 
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(i and any element p~" of Q v) N(,+I stronger than Pi- Note that this might be 

interpreted as playing p/, followed by a sequence p~ ~cii. The other case (INC has 

no winning strategy) is similar. I 

PROPOSITION A.1.20: Suppose 

,So • (~<,~,<~(/t*)) + and ,$l • (~<~,<x(#*)[So]) + 

(and as usual in this section, n = A+). Let Da be the club filter of A for each 

~t • ,~1. Then any really (So, S1, D )-complete forcing notion preserves stationarity 

of So, St in the respective filters. 

A.2. Examples 

Before we continue with the general theory, let us present a simple example with 

the properties we are investigating. It is related to guessing clubs; remember that 

there are ZFC theorems saying that many times we can guess clubs (see [13, Ch. 

III, sections 1,2], [5]). 

Hypothesis A.2.1: Assume A <:~ = A and A + = ~. Suppose that So = So c_ S~ 

is a stationary set such that S aJ  S~ \ So is stationary too (but the definitions 

below are meaningful also when S = (3). Let 

,~l -'- {fi = (ai : i  </~) : 0 is increasing continuous and for each i _< ~, 

ai C t~ and if i is not limit then ai C So }. 

[Check that So E (~<~,<x(~)) + and ,~t E ~<~,<x[S0].] 

Note that (provably in ZFC, see [13, Ch. III, §2]) there is a sequence C' = 

(C~ : 5 E S) satisfying for each 5 E S: 

C5 is a club of 5 of order type A, and if a C nacc(C5), then cf(a) = A 

such that t~ ~ idP(C), i.e., for every club E of n for stationary many 5 E S, 

5 = sup(E n nacc(Cs)), even {a < 5 : min(C5 \ ( a  + 1)) • E} is a stationary 

subset of 5. We can use this to show that some natural preservation of not 

adding bounded subsets of n (or just not collapsing cardinals) necessarily fails, 

just considering the forcing notion killing the property of such C'. [Why? As in 

the result such C exists, but by iterating we could have dealt with all possible 

C's.] We will show that we cannot demand 

a C nacc(Cs) ~ cf(a) < )~, 
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tha t  is, in some forcing extension preserving GCH there is no such C'. So, for C' 

as earlier but  with the above demand,  we want to add generically a club E of A + 

such tha t  

(V(~ E S)(E n nacc(C~) is bounded in (~). 

We will want our forcing to be quite complete. To get the consistency of no 

guessing clubs we need to iterate,  which is our main theme. 

Detlnition A.2.2: Let C = (C5 : 5 E S) be a sequence such tha t  for every ~ E S: 

Ca is a club of 5 of order type  A, and 

if a E nacc(Ca), then cf(a)  < A (or at least a ~ So). 

We define a forcing notion QI_ to add a desired club E C k+: C 
def ~ +  

a c o n d i t i o n  in QL is a closed subset e of A + such tha t  ae  = sup(e) < and C 

(V5 E S n (a¢ + 1))(e n nacc(Cs) is bounded in (f), 

t h e  o r d e r  _<q~: of Q~- is defined by 

eo _<Q~_ el if and only if eo is an initial segment of el .  

It should be clear tha t  (QL, c -<Q~) is a partial  order. We claim tha t  it is quite 

complete. 

PROPOSITION A.2.3: 

1. Q~ is (< A )-complete. 
2. Q~ is strongly So-complete. 

Proof." 1) Should be clear. 

2) Suppose that  N -~ (N(X;), E, <~) is (,k, So)-good (see A.1.7) and Q~- E N.  

Further  suppose tha t  g = (ei : i < ~) c_ Ql_c N N is an increasing Q~--generic 
def 

sequence over N.  Let e = Ui<x ei U {sup(Ui<x ei)}. 

CLAIM A.2.3.1:  e E Q \  C" 

Proof of the claim: First  note tha t  as each ei is the end extension of all ej for 

da k + (as each is below A+). j < i, the set e is closed. Clearly ae = sup(e) < ae~ 
So what  we have to check is tha t  

(V5 E S N (a¢ + 1))(e N nacc(Cs) is bounded in 5). 

Suppose tha t  (~ E S n (ae + 1). If 5 < ae, then for some i < )~ we have 5 _< a ~  

and e n 5 = ei n 5 and therefore e N nacc(Cs) is bounded in & So a problem could 
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occur only if 5 = a~ = sup i<a c ~ ,  but  we claim tha t  it is impossible.  Why?  

Let ~* = N N A +, so 5* E 8o (as N is (A, S0)-good) and therefore 6" ¢ 5 (as 

So r~ S = ~). For each/3 < ~* the set 

is open dense in Q~? (note tha t  i fq ¢ Qb ,  q \ / 3  = 0 then q < qu{c~q,/3+1} c Q~) .  

Clearly :Z/3 ¢ N.  Consequently,  by the genericity of ~, ei E 2:t~ for some i < A and 

thus c ~  > /3 .  Hence supi<,~ o~ei > (~*. On the  other  hand,  as each ei is in N we 

have c ~  < 5* (for each i < A) and hence ~* = supi<A Oze, = (~, a contradiction.  

1 

CLAIM A.2.3 .2 :  For each i < A, ei ~ e. 

Proof  of  the claim: Should be clear. | 

Now, by A.2.3.1+A.2.3.2,  we are done. | 

PROPOSITION A.2.4:  For each gt E $1, let Da be the club filter of  A (or any 

normal filter on A). Then the forcing notion Q~? is really (So, S1, D)-complete.  

Proob By A.2.3 we have to check demand  A.l.16(3~f) only. So suppose tha t  

= (N~ : i _< A) is (A, n, 81, D, Q~ )-suitable and ( a , X )  is a suitable basis 

for ]V (and we may  assume tha t  X is a closed unbounded subset  of A). Let  

r ¢ No. We are going to describe a winning s t ra tegy  for player COM in the 
~P 1 I"  game ~N,D,X,a(QC, )" There  are two cases to consider here: Nx A t~ E S and 

1 Na A h: ¢ S. The  winning s t ra tegy for COM in 6N,D,X,~(QC, r) is slightly more 

complicated in the first case, so let us describe it only then. So we assume 

N :, n t,: ¢ S. 

Arriving at  the stage i < A of the game,  COM chooses ¢i according to the 

following rules: 

if i = 0 ,  then it t a k e s ¢ i = m i n X ,  

i f i = i o + l ,  then it takes 

¢i=min{jEX:¢io+l<j & (N¢,o+IN~,NjM~)MCN:,n,~¢~}, 

if i is limit, then it lets ~i = s u p j < i  ~ j .  

Note tha t  a s  CN:,n~ is unbounded in Nx C/n and X is a club of A, the above 

definition is correct; i.e., the respective ~i exists, belongs to X and is necessarily 
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above all ~j chosen so far. Next, COM plays Pi defined as follows. The first P0 is 

just r. If  i > O, then COM takes the first ordinal 7i such that  

s u p ( N ~ i + l  n CN.xA~) < "Yi < N ~ i + l  n n 

and it puts 

Pi = U qj'~U{Nu;<,¢;+I An}  U {?i}. 
j < /  

Note that cf(N¢,+l An) = A and CNxn. has order type A, so CNxo,~ NN¢,+I An is 
bounded in N¢~+~ n n and the ?~ above is well defined. Moreover, by arguments 

similar to that  of A.2.3, one easily checks that  

U c 
j < i  

and then easily Pi E Ql_c and it is _<q~-stronger_ than all qj,~ (for j < i, ~ < ~). 

Consequently, the procedure described above produces a legal strategy for COM 
~P 1 in ~R,D,x,a(Q~, r). But why is this a winning strategy for COM? Suppose that  

((Pi, ~ ,  qi) : i < A/ is the result of a play in which COM follows our strategy. 

First note that  the sequence (~i : i < A) is increasing continuous, so it is a club 

of ~ and thus {~i : i < ~} E Da. Now, let e = Ui<x P~ U {Nx N n}. We claim that  
clef 

e E Qb" First note that  it is a closed subset of A+ with sup e = ae = Nx N n. So 

suppose now that  5 E S N (ae + 1). If 5 < a¢, then necessarily 6 < api for some 

i < A and therefore eNnacc(C~) = Pi nnacc(Ch) is bounded in & The only danger 

may come from 5 = N~ N n. Thus assume that /3  E e and we ask, where does/3 

come from? If it is from P0 U U~<x q0,~ then we cannot say anything about it (this 

is the part  of e that  we do not control). But in all other instances we may show 

tha t /3  ¢ nacc(Cgxn~). Why? If/3 E U~<~ qi,~ ".pi for some 0 < i < A, then by 

the choice of 7i and Pi and the demand that  qi c N¢~+1 we have that /3  ¢ CN~n~. 
Similarly if ~ = "Yi. So the only possibility left is tha t /3  = NU~<, ¢j+1 N n. If i 

is not limit then cf(Nu¢<~ ¢~+1 N n) = A so /3 ¢ nacc(CN,n~). If i is limit, then 

by the choice of the ~j's we have Nu~<i G+ 1 n n C acc(CN~o~) and we are clearly 

done. 

Note that  if N~ n n ~ S then the winning strategy for COM is much simpler: 

choose successive elements of X as the ~j's and play natural bounds to sequences 

constructed so far. I 
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Remark A.2.5: 

1. Note that one cannot prove that the forcing notion Q~: is basically (So, ,~l)- 

complete. The place in which a try to repeat the proof of A.2.4 fails is the 

limit case of Ni N s. If we do not allow COM to make ' jumps" (the choices 

of ffi) then it cannot overcome difficulties coming from the case exemplified 

by 

CN~n~ = { X ~  n h: : i < ~}. 

2. The instance S = S~ + is not covered here, it is different, but we will deal 

with it elsewhere. 

The following forcing notion is used to get Prs  (see 0.2). 

Definition A.2.6: Let C', = {Ca : ~ E S} be with Ca a club of ~ of order type 

and let h = {ha : ~ E S} be a sequence such that ha: C~ > ,~ for ~ E S. Further, 

l e t / )  = (Da : ~ E S} be such that each Da is a filter on Ca. 

1. We, define a forcing notion ~c,5:  
2 a c o n d i t i o n  ill QO,~ is a function f :  c~ I ---+ ~ such that c~ S < A + and 

(Vd E SN(a /+ l ) ) ( { / f l  E Ca : ha(fl) = f(/3)} is a co-bounded subset of Ca), 

t h e  o r d e r  _<Q~=~ of Q~:£ is the inclusion (extension). 
2,13 2. The forcing notion Qc,a is defined similarly, except that we demand that 

a condition f satisfies 

(V6 E S M (c~f + 1))({t3 E Ca: ha(13) = f(fl)} E Da). 

PROPOSITION A.2.7: Let Do be tile club filter of )~ for 6 E ,~L. Then the forcing 

notion ~c?,~ is really (So, ,~1, D)-completo. 

Proof." This is parallel to A.2.4. It should be clear that ~( :~ is (< ,~)-complete. 

The proof that it is strongly S0-complete goes like that of A.2.3(2), so what we 

need is the following claim. 

CLAIM A.2.7.1: For each/~ < A + the set 

27/3 deft { f  E Q~-Z:/3 E dora(f)} 

is open dense in ~ Z" 

2 Proof of the claim: Let f E Qd,~" We have to show that for each 5 < A+ there 
2 is a condition f t  E Qd,~ such that f _< f t  and 5 _< ctS,. Assume that for some 
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5 < A + there is no suitable f '  >_ f ,  and let 5 be the first such ordinal (necessarily 

is limit). Choose an increasing continuous sequence (/3< : ¢ < cf(5)} cofinal in 

and such that/30 = a / a n d / ~  • 5 \ S for 0 < ( < cf(5). For each ~ < cf(5) pick 

a condition f< > f such that a f t  =/3~ and let f* = f U U<<cf(Z) f<+l [[/3~,/~<+1). 
If 5 ~ S, then easily f* • ~ , h  is a condition stronger than f .  Otherwise we take 
f ' :  5 ---+ A defined by 

{hs(~) i f ( • C s ' . a f ,  
f ' ( ~ ) =  f*(~) otherwise. 

Plainly, ff  • CIP~,~ and it is stronger than f .  Thus in both cases we may construct 

a condition f '  stronger than f and such that 5 = af , ,  a contradiction. | 

With A.2.7.1 in hand we may repeat the proof of A.2.3(2) with no substantial 
changes. 

The proof that Q~C,~ is really (,So, $1, D)-complete is similar to that of A.2.4. 
So let N, (~, X) and r be as there and suppose that N~ n ~ • S. The winning 

strategy for COM tells it to choose ~/as in the proof of A.2.4 and play Pi defined 

as follows. The first P0 is r. If i > 0, then COM lets 

' U Pi ---- qj,~ 
j< i  

(which clearly is a condition in CI~C,~) and chooses Pi • ~ , ~  n N<i+l such that 

P~ <_ Pi, CN~,n,¢ (7 Ni,+I C_ dom(pi) and 

Clearly this is a winning strategy for COM. | 

Remark A.2.8: 

1. In fact, the proof of A.2.7 shows that the forcing notion Q~-,~ is basically 

(So, $1)-complete. The same applies to A.2.10. 

2. In A.2.6, A.2.7 we may consider h such that for some h*: ~ ~ t~, for each 

5 6 S we have 

( w  c c~)(h~(~) < h*(~)), 

which does not put forward any significant changes. 

3. Why do we need h* above at all? If we allow, e.g., h6 to be constantly 5, 

then clearly there is no function f with domain ~ and such that  

(V5 e S)(5 > sup{a • C5: f ( a )  :~ hh(a)}) (by the Fodor lemma). We may 
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still ask if we could jus t  demand  ha: G'~ ) 6? Even this necessarily fails, 

as we may  let ha(a)  = min(Ca \(c~ + 1)). Then,  if f is as above, the set 

E = {6 < g : 5 is a limit ordinal and (Vc~ < 5)(f(c~) < 5)} is a club of g. 

Hence for some 5 E S we have 

A 2 < ~ = s u p ( E n ~ ) = o t p ( E A ~ )  

and we get an easy contradiction.  

Another  example  of forcing notions which we have in mind when developing 

the general theory  is related to the following problem. Let  It" be a A-free Abelian 

group of cardinal i ty ~. We want  to snake it a Whi tehead  group. 

Definition A.2.9: Suppose tha t  

(a) K1 is a s t rongly s-free Abelian group of cardinal i ty  s,  (KI,~ : a < s)  is a 

fi l tration of Ks  (i.e., it is an increasing continuous sequence of subgroups 

of K1 such tha t  K t  = [,J~<~ KI,~ and each KI,~ is of size < s) ,  

F : {oz < h; : / r ( 1 / I ( 1 , ( ~  i s  not A-free), 

(b) K2 is an Abel ian group extending Z, h: K2 2K~ K1 is a h o m o m o r p h i s m  

with kernel Z. 

We define a forcing notion Q~2 ,h: 

a c o n d i t i o n  in ~I~h- 2 ,h is a h o m o m o r p h i s m  g: l(s,c~ ) tt'2 such tha t  c~ E t~ \ F 

and h o g = idhl  ,~, 

, ~3/,,- 2 ~ h the  o r d e r  <-(~K2 , of is the inclusion (i.e., extension).  

PROPOSITION A.2.10:  Let Da be the club filter of A for h E S1. Assume El ,  

Kl,~, K2 and F are as in assumptions of A.2.9 and P C_ S. Then the forcing 

notion Q 3  ,h is really (So, $l , D )-complete. 

Proof." Similar to the proofs of A.2.4 and A.2.7. | 

A.3.  T h e  i t erat ion  t h e o r e m  

In this section we will prove the preservat ion theorem needed for C a s e  A. Let us 

s ta r t  with some explanat ions  which (hopefully) will help the reader to unders tand  

what  and why we do to get, our result. 

We would like to prove tha t  if (} = (IPi, Qi : i  < 7) is a (<  h',)-support i terat ion 

of sui tably  complete  forcing notions, (S0, $1, D) are as in A.l .16,  then: 
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i f  N = <N.i : i < A> is an increasing continuous sequence of elemen- 

t a ry  submodels  of (7-/(~), E, <.*), [INiI[ = A, A + I  C Ni, (Ni) <~ _C Ni 

for non-l imit  i, and for some ~ E $1 and X E D~ 

(Vi E X ) ( N i  M p* = ai & N i + I  [-1 I/,* = ai÷l) 

and p E P~ C~ No, 

t h e n  there is a condit ion q E F~ s tronger  than  p and (N~,P~)-  

generic. 

For each _Qi we may  get respective q, but  the p rob lem is with the i teration.  

We can s ta r t  with increasing successively p to Pi E N~ (i < A) and we can keep 

meet ing dense sets due to (< A)-completeness. But  the main  question is: why 

is there a l imit? For each a E 7 M N~ we have to make sure tha t  the sequence 

<pi (a)  : i < A> has an upper  bound in _Q~, but  for this we need informat ion which 

is a ]?~-name which does not belong to N:~, e.g., if Qi is Q~d,t) we need to know 

C~Xn,~,hNn,. But for each i, the size of the informat ion needed is < A. 

As the life in our context  is harder  than  for proper  forcing i terations,  we have 

to go back to pre-proper  tools and methods  and we will use trees of nanles (see 

[10]). A tree of conditions is essentially a non-determinist ic  condition; ill the 

limit we will show tha t  some choice of a branch through the tree does the job. 

[Note tha t  one of the difficulties one meets  here is tha t  we cannot  diagonalize 

over objects  of type  A x ~o when A > R0.] 

Defini tion A. 3.1: 

1. A tree ( T , < )  is normal if for each to, t1 E T,  if {s E T : s < to} = {s E r : 

s < tl} has no last element,  then to = tl .  

2. For an ordinal % Tr(7  ) s tands  for the family of all triples 

T = ( T  T , < T  rk T) 

such tha t  (T T, <7-) is a normal  tree and rk T : T T ~ y + 1 is an increasing 

function. 

We will keep the convention tha t  Ty ~ (2r~, <~, .x = rky). Somet imes  we may  write 

t E T i n s t e a d t E T  T ( o r t E T ) .  

The  main  case and examples  we have in mind are triples (T, <,  rk) such tha t  

for some w C 7 (where 7 is the length of our i terat ion),  T is a family of par t ia l  

functions such that:  

(Vt E T) (dom( t )  is an initial segment  of u, and (Va E w)(t[o~ E T));  
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the order is the inclusion and the function rk is given by 

rk(t)  = m i n { a  E w t2 {7} :  dom(t)  = ct N w} 

(see A.3.3). Here we can let N~ O 7 = {a~ : ( < A}. Defining Pi we are thinking 

of why (pj(a~) : j  < A} will have an upper  bound.  Now A x A has a diagonal.  

Note: starting to take care of a(  only after some time is a reasonable s trategy,  

so in stage i < A we care abou t  {a~ : ~ < i} only. 

But  wha t  does it mean  to do it? We have to guess the relevant information 

which is a IPacname  and is not present.  

W h a t  do we do? We cover all possibilities. So the tree T¢ will consist of objects  

t which are guesses on what  is ( information for a~ up to ~tb stage: e < ~). Of  

course we should not inflate, e.g., (p~ : t E T~} E N~. 

I t  is very nice to have an open option so tha t  in stage A we can choose the 

most  convenient branch. But  we need to go into all dense sets and then we have 

to pay  an ex t ra  price for having an ex t ra  luggage. We need to put  all the Pi'S 

into a dense set (which is tr ivial  for a single condition).  W h a t  will help us in this 

task is the s t rong S0-completeness.  Wi thou t  this big brother to pay our bills, our 

scheme would have to fail: we do have some ZFC theorems which put  restr ict ions 

on the possible i terat ion theorems.  

Definition A.3.2: Let Q = (Pi, Qi : i < 7 / b e  a (<  t@suppor t  i teration.  

1. We define 

FTr(~) de_f {~ _-- (Pt : t E T T) :"/- E Tr(7), (Vt E TT)(p t  E ~rk(t)) and 

(Vs, t • TV-))(s < t :=~ p~ = p t l r k ( s ) ) }  

and 

FTrwk(~}) dz--f {/5 = (Pt : t E T T) :T • Tr(7) ,  (Vt E TT)(pt  • Prk(t))and 

(Vs, t E TT))(~  • < t ~ p~ > P t [ rk ( s ) )} .  

We m a y  write (Pt : t E T) .  Abusing notat ion,  we mean/3  • FTrv, k(Q) (and 

/) E FTr((}))  determines  7- and we call it 7 -~ (or we may  forget and write 

dom(/5)). 

Adding pr imes to FTr,  FTr~,k means  tha t  we allow pt(/3) to be (a P s - n a m e  

for) an element of the complet ion ~S of Q¢. Then  Pt is an element of Pl'k(t) - -  

the (<  s ) - suppor t  i terat ion of the complet ions ~S  (see 0.18). 

2. If  T E Tr(7), /3,  q E FTr~,,k((} ), dom(/~) = dom(q) = T 7- then we let 

/5 _< q if and only if (Vt • TT)(pt  <_ qt). 
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3. Let  T1, T2 E ~ ' (7 ) .  We say tha t  a surjection f :  T2 ont~ T1 is a project ion if 

for each s, t E T2 

(o~) s <_2 t ~ f ( s )  <_1 f ( t ) ,  and 

(¢~) rk2(t) <_ rk l ( f ( t ) ) .  
t 4. Let  pop~  E FTr~k(Q),  d o m ( f  e) = Te (~ < 2) and f :  T1 ~ To be a 

projection. Then  we will write fo  <S / 51 whenever for all t E T1 
0 

(a)  P y ( t ) [ r k l ( t )  <-~trkl(t)pt 1, and 
(¢3) if i < rkl( t ) ,  then 

pl  Ii , '  o . q _ %  p,  ( , ) )  . Pf(t)(~) 5 ~ Pt (i) ~ (3q E _ I - ,, 

The projections play the key role in the i terat ion lemma. Therefore,  to make 

the presentat ion clearer we will restrict  ourselves to the case we actually need. 

You may think of 7 as the length of the iteration, and let {/3~ : ( < A} list 

N N 7, w -- { ~  : ~ < c~}. We are t rying to build a generic condition for (P-c, N)  

by approximat ing it by a sequence of trees of conditions. In the present tree we 

are at  stage c~. Now, for t E T ,  t ( i )  is a guess on the information needed to 

construct  a generic for (N[G~,~], Qi[G~,~]), more exact ly the c~-initial segment of 

it. 

Defini t ion A.3.3:  Let 7 be an ordinal. 

1. Suppose that  w C_ 7 and a is an ordinal. We say tha t  T E Tr(7) is a 

s tandard ( w , a ) -c-tree if 

(a)  (Vt E TW)(rkT(t)  E w U {7}), 

(~) if t E T T, rkT(t)  = ~, then t is a s e q u e n c e  (ti : i E w D1 a}, where each ti is 

a sequence of length a ,  

(7) <7- is the extension (inclusion) relation. 

[In (3) above we may demand that  each ti is a function with domain [i, a) ,  

i < a ,  but  we can use the default  value • below i, hence making such ti 

into sequences of length a.  Note tha t  T T determines T in this case; (} is 

the root  of T.] 

2. Suppose tha t  w0 C_ Wl C_ % a0 <_ a t  and T = ( T , < , r k )  is a s tandard  

(Wl, O~ 1)'c-tree. We define the project ion p-ro :(~J(wo,ao)'cel) (,-1-) of  T onto (Wo, ao) 

as (T*, <*, rk*) such that:  

T* = { ( t i [ ao :  i E Wo fqrk( t )}:  t = ( t i :  i 6 WlClrk(t)} 6 T},  

<* is the extension relation, 

rk*((tirc~o : i E Won rk(t)}) = min(wo U {7} "- rk(t))  for t E T. 

[Note tha t  - r o  :(w1'~I ) p j(~o,~o)(T) is a s tandard (Wo,ao)-c-tree.] 
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3. If  wo _C wl C_ 7, ao < (~1, T1 = ( T l , < l , r k l )  is a s t andard  (Wl,C~l)~-tree 
and To = (To, <o, rko)  = *'~l(~tUl'°/1)/~r~ tnuJ(u,o,ao)~, t l ) ,  then the mapp ing  

Tt ~ <ti : i  E w,  Nrk t ( t ) }  , ~ < t i [ a 0 : i E w o C q r k l ( t ) ) E T o  

is denoted by p r o j ~  (or proj (w' '~)~ (wo,ao) j" 

[Note tha t  p r o j ~  is a project ion from T1 onto To.] 

4. We say tha t  7- = <T~ : a < a*) is a legal sequence of standard 7-trees if for 

some ~ = (.u,~ : a  < a*)  we have 

tb is an increasing continuous sequence of subsets of 7, 

for each a < a*,  T~ is a s tandard  (w~, a )%tree ,  

if a < / 3  < c~*, then  T~ = p j(u,~,~)~Zl. 

For a legal sequence 7- = <T~ : a < a*) of s t andard  7-trees, a* a l imit  
6-- _ 

ordinal, we define the inverse linfit l i ra(T) of 7- as a triple 

(/3) 
(7) 

5. 

+-- +-- +-- _ 

(T~im(¢) <lira(7-) rkmn(T)) 

such tha t  
+-  _ 

(a) T lhn(7) consists of all sequences t such tha t  

(i) dora(t)  is an initial segment  of w def [.j~<~. w~ (not necessarily 

proper) ,  

(ii) if i E dora(t) ,  then ti is a sequence of length c~*, 

(iii) for each a < c~*, (ti Fa : i E w~ N dom(t ) )  E T~, 
~-  _ 

(b) <lira(q-) is the extension relation, 
<-- <__ _ 

(c) rklim(T)(t) = nfin(w U {7} "" dom(t) )  for t G T lira(7-). 

[Note tha t  it may  happen  tha t  T lim(T) = {(>}, however not if 7- is 

continuous; see below.] 

6. A legal sequence of s tandard  7-trees T = (T~ : ct < a*)  is continuous if 
+.-_ 

T~ = lim(T/3 :/3 < o,) for each limit a < a*. 

PROPOSITION A.3.4:  Suppose that a0, c~t, a2, 7 are ordinals such that  ao <_ 

a l  <_ a2. Let  w~ o C_ 'w~, C_ w~2 C_ 7. I f  7-1 is a standard (wb  al) '~-tree,  then 
• ( w :  ,cx: ) i , - r  

TO = proJ(wo,ao)~ 11) iS a standard (Wo, ao)~-tree.  Assume tha t  for g < 3, Te are 

standard (we, ae)~-trees such that 

*'ro:(W2'a~)t~r To = ~,"ro ;(~''~')l'r~J(~o,~o)~,lj and T1 = u J(,~,~,~)~,2j. 

Then To .(~,a~) = and proj  = Pr@o o proj   
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Moreover ,  if~5 e = (p f :  t E Tt)  E FT¢((~) (for e < 3) are such thatp ° ---projT-'0/5' 

and/51 --<pro]~ /52, then ~o -<proj~ t52" 

PROPOSITION A.3.5: Let  7, a* be ordinals, a* limit, and let 71-= (T~ : a < a*) 

be a continuous legal sequence of  standard 7-trees. 
+-- 

1. The  inverse limit lira("/') is a standard ((.J~<~. w~, a*)n-tree and each ~ is 
+-- 

a projection of lira("/') onto (w,~, a) and the respective projections commute.  

(Here, w~ C_ 7 is such that  7-~ is a standard (w,~, a)'Y-tree.) 
+-- 

[So we do not  cheat: lira("/-) is really the inverse limit of'I-.] 
+- _ 

2. I rA  <A = A, a* < A and [[TaU _< A for each a < a*, then  [[Tlim(T)[[  ~ A. 

3. / f  a* < A, ~ = A +, (~ = (PC' _Qe : ~ < 7t is a (< ~)-support iteration of  

(< A)-complete forcing notions and/5~ = (p~ : t E T~) E FTr'(Q) (for each 

a < a*) are such that  [T,~[ _< A for a < a* and 

4~- _ 
then there is/5"* = (PT* : t E lim(T)) E FTr'(Q) such that  

(w<~*)(/5~s ~ p") .  
.lim(T) 

proJ Ta 

Proof." 1) Should be clear: just read the definitions. 

2) It follows from the following inequalities: 

+-- _ 

IIT"mmll < ~ I IT. I I  < A <x = A. 

+_- 
3) For each t E lira(7-) we define a condition p~* E P~ as follows. Let t ~ = 

+-- _ ~ - -  _ 

proj~-m(7-)(t) (for a < a*). We know that the sequence (pt% [rklim(T)(t) : o~ < oe*) 
/--- _ 

is increasing (remember rklim(7-)(t) < rk . (G)  for each a < a*) and p~* is sup- 
(3:* posed to be an upper bound to it (and p~* E ~" ). We define Pt quite /--- 

rk lira (q') (t) 

straightforwardly. We let 

4-- _ 

dom(pT*) = ~{dom(pTo)n  rkUm(T)(t) : a < a*} 

and next we inductively define p~* (i) for i E dom(p~*). Assume we have defined 

Pt Ii s u c h  t h a t  

(Va < a*)(pt% [i <~,: p?* Ii). 
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Then (remembering our convention tha t  if i ~ dora(p) then p(i) = 09~) 

p~* Ii I}- " the sequence (pt% (i) : ct < a*) C_ @ is _<~ -increasing and 

a < fl < ct* & pt~(i) 7~p~t~(i) ~ (3q E Q i)(pt%(i) <Q, q <_(~ p~t,(i)) 

and Qi is (< ;~)-complete and a* < X'. 

Hence we find a I?~-name o* • Pt (z) (and we take the <~-first. such a name) such that  

PT* [i I~- "PT" (i) E ~i  is the least upper  bound of (pt5 ( i ) : a  < a*} in ~ i" -  

Now one easily checks tha t  p~* EF t  Consequently, the condition p~* is /___ 
r k l i m ( 7 - )  ( t )  

+__ 

as required. But  why does (p~* : t E lira(7-)) E FTff(Q)?  We still have to argue 

tha t  
+__ /-- _ 

(gs, t E lim(7-))(s < t ~ p~* =p~*[rkHm(T)(s)). 

t - -  
F o r  this, note tha t  if s < t are in lim(7-) and so , to  are their projections 

/ --  _ 

to To then so <o  to and p ~  = pO I rko(so)  and rklim(7-)(s) < rk~(so) .  Thus 
- -  t ( ~  - -  

+-- _ 

clearly dom(p~ a*) = dom(p~*)N  rklim(T)(s). Next,  by induction on i E 
+ -  _ 

dom(p~*) M rk lim(T)(s) we show tha t  a* • o* p~ (z) = Pt (i). Assume we have proved 

tha t  p~* [i = p~" Ii and look at, the way we defined the respective values at i. We 
O " looked there at the sequences (;t~ (i) : a < a ' i ,  (Ps. (z) : (~ < ct*) and we have 

chosen the <~-first names for the least upper bounds to them. But  i < rko(so)  

for all a < a*, so the two sequences are equal and the choice was the same. I 

PROPOSITION A.3.6: Assume that So C_ [p.*]-<x and Q = (~o,Qo : a < "~) is a 
(< n)-support iteration of (< A)-complete strongly So-complete forcing notions, 
and :~co (for a < 7) are IPo-names such that 

II-v~ "xo witnesses the most in A.1.7(2) for Q o". 

Further, suppose that 

(a)  X -< (7-/(k), E, < ~ ) i s  (A, So)-good (see A.1.7), (_x,~ : a < 7) ,C~o,Q,. . .  E N,  

(/3) 0 E Wo C_ Wl E N A [7] <~, C~o < & is an ordinal, a l  = ao + 1, 

(7) To = (To, <o, rko) E N is a standard (Wo, ao)~-tree, IIToll _< ~, 

(~) T1 = ( T l , < b r k l )  is such that 
T1 consists of all sequences t = (ti : i E dora(t))  such that dom(t)  is an 

initial segment ofw1, and 
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Then 

(a) T1 is 

each ti is a sequence of length ~1, 
t' d__ef (ti rao : i E dom(t) n We) • To, 

i f  i E dora(t) \ wo, a < so then t~(a) = , ,  

for some j( t )  • dora(t) U {'~}, 

ti(ao) is • for every i • dora(t) ". j ( t ) ,  and for each i • dora(t) M j( t)  

ti(ao) E N is a ]Pi-name for an element of Q i, 

rkl(t) = min(wl U {7} \ Dora(t)) and <1 is the extension relation. 

a standard (wl,  l) -tree, IITlll = 
(b) To is the projection of T1 onto (we, c~o), 
(c) there is q = (qt : t E T1) E FTr ' ( (~)  such that 

(i) /~ <_proj~_l ° q, 
(ii) if t E T1 "{( /}  and (Vi E dom(t))(ti(ao) 7 ~ *), then the condition 

qt E P'rkl (t) iS an upper bound in P'rkl (t) of a Prk~ (o-generic sequence 
over N,  and for every/3 E dom(qt) = NMrkl(t) ,  qt(fl) is (a name for) 

the least upper bound in ~ of the family of all r(fl) for r from the 
generic set (over N)  generated by qt, 

(iii) i f t  E T1, t' = proj~( t )  C To, i C dora(t) and ti(ao) ¢ *, then 

qt(i) Ib "pt,(i) < qt(i)" and 

qt[i It-~,~ '~ot,(i) -<G t~(ao) ~ t~(ao) <_~ qt(i)", 

(iv) q0 = P0 and i f t  • T~ " { 0 }  and j( t )  < % then 

qt = qttj(t)Upt, I[j(t),rkl(t)),  where t ' =  proj~o(t ) • To. 

Proo~ Clauses (a) and (b) should be clear. 

(c) Let (re : ( < A) list with A-repetitions all elements t of T1 \ { 0 }  such that 
(Yi • dom(t))(ti(ao) ¢ *). For a • wl U {7} let (Z~: ~ < A) enumerate all open 
dense subsets of P~ from N. By induction on ( < A choose r< such that 

• re • ~rkl(t¢) C)N, 
if t' proj~(t¢) ,  then Pt' Irkl(t¢) _<~,,k~td • = r< and, for i C dom(t¢), 

r¢[i lt-~,~ "pt,(i) <-G (t¢)i(ao) ~ (t¢)i(ao) <_~ re(i)", 

• r~- C Z~ kl (re) for all ( _< (,  

• i f t  • T1, ( < (, t <__1 Q, t <_1 t¢ (e.g., t = t~ _<1 t¢), then r~[rkl(t)  -<e~k~m 

re I rkl(t). 
Since we have assumed that all Q~'s are (names for) (< A)-complete forcing 
notions, there are no difficulties in carrying out the above construction. [First, 
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working in N, choose r~ C Prkl(t¢) (-/ N satisfying the second and the fourth 
demand. How? Declare 

dom(r~) = [wl U U{dom(r~) : ~ < (} U dom(p .T1 (t~))] N rkl(t¢) 
projT o 

and by induction on i define r~ (i) using the (< A)-eompleteness of Qi and taking 

care of the respective demands (similar to the choice of qt done in detail below). 
Next use the (< A)-eompleteness (see A.1.3) to enter all ~]~kl(t¢) for ~ ~__~ (. Note 

that the sequence (Z~ k~(~¢/ : ~ < () is in N, so we may choose the respective 

,r~ > r~ in N.] 
Now we may define q = (qt : t C T~) E FTr'(Q). If t E T1 is such that 

j ( t )  < rkl(t), then qt is defined from qtljlt) and/~ by demand (c)(iv). So we 

have to define qt for these t E T~ such that (Vi C dom(t))(t~(o~o) ~ *) (and t ¢ 0) 

only. So let t c T~ \ { 0 }  be of this type. Let 

dom(qt) = U{dom(r¢) : ( < A & t _<l t¢} Mrk,(t) C_ N 

and by induction on i e dom(qt) we define qt(i) (a Pi-name for a member of ~i)- 

So suppose that i C dom(qt) and we have defined qt Ii E P~ in such a way that 

(*) (V( ( A)(t ~1 t; ~ r¢ Ii <--E qt [i). 

Note that. this demand implies that qt [i C P~i is an upper bound of a generic 
sequence in Pi over N (remember the choice of the r('s, and that i E N and 

there are unboundedly many ( < A such that t¢ = t, and all open dense subsets 

of ]~ from N appear in the list (Z~ : ( < A)) and therefore 

qt [i I~-p, "the model N[GE] is (A, $0)-good" 

(remember 0.19). Look at, the sequence (r;(i)  : t  <1 t¢ & i E doln(r¢) N rkl(t)). 

By the last two demands of the choice of the r¢'s we have 

qt[i IF-~, "(r;(i) : t <_a t¢ & i c dom(r¢) N rkl(t)) is an increasing 

Qi-generic sequence over N[G~j".  

Consequently, we may use the fact that Qi is (a name for) a strongly S0-complete 

forcing notion and x~ ~ N, and we take qt (i) to be the <~-first name for the least 

upper bound of this sequence in ~.i- So we can prove by induction on rkl (t) that 

(*) holds. 

This completes the definition of q. Checking that it is as required is straight- 

forward. | 
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THEOREM A.3.7:  Assume A<~ = A, ~ = A + = 2 ~ < it*. Suppose that So • 

(~<~,<x(/~*)) +, ,$1 • (~<~,<a(#*)[So])  + and D is a function such that d o m ( D )  = 

31 and for every g • d 1 

D(6) = D~ is a normal filter on A. 

Further, suppose that (~ = (P~, Qi : i < "y) is a (<  t~)-support iteration such tha t  

for each i < 7 

I~-~, ' ~ / i s  really (So, S1, D)-complete with witness xi 

for the most in A.1.16(3)(7)". 

Then: 

(a) the forcing notion P, is (<)~) -comple te  and strongly So-complete, 

(b) i f  a sequence ]9 = (Ni : i < A) is (A, ~, $1, D, P,)-suitable (see A.1.16(1)) 

and p • ~-r N No, and Q, (x~ : i < 7), (So, S1, D) • No, 

then there is an (N~, ]?.y)-generic condition q C ]Pv stronger than p, 

(c) the forcing notion Pv is really (So, $1, D)-complete. 

Proo~ (a) I t  is a consequence of A.1.3 and A.1.13. 

(b) Plainly, we may  assume 3' > ,~. Let (X, 0~) be a suitable basis for ]9, so 6 • $1, 

X • Da and 

(Vi • X)((Ni+l) <x c_ Ni+l ~ N~+I n ~* = ai+~). 

We m a y  assume tha t  all members  of X are limit ordinals. Let w~ = Nx A -y (so 

]lw;~]l = A). Choose an increasing continuous sequence (w~ : a < ~) such tha t  

Ua<:~ w~ = w~ and for each c~ < A 

I wa I < "~, wa _C Na N % 0 • wa, and if c~ is limit then wa = Wa+l, 

and wa e Na  for non-l imit  a (so then  (w;~ : fl _< a )  e Yo+l for a C x). 

Now, by induction on a < A we define a legal continuous sequence of s t andard  

y- t rees  (Ta : c~ <_ A) for ('wa : a <_ A} and a sequence (iS a : ~ < A} such tha t  

i6 ~ = (p~3 : t e TZ) e FTr'((~) and /5 z _<projrr~ /5 a for each /3 < ct < A and 

% , f a  • N~+I. 
At stage (~ = 0 of the construction: 

To consists of all sequences t = (ti : i e dom(t) )  such tha t  dom(t)  is an initial 

segment  of w0 (not necessarily proper)  and, for each i • dom(t) ,  ti is a sequence 

of length 0 (i.e., 0 ) ,  
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rko(t) = min(wo U {'y} \ dom(t)) and <o is the extension relation; 

for each t C To we let pt ° = p[rko(t)  and finally po = {prO: t C To} E FTr'(Q). 

[Note that To = (To, <o, rko) C No is a standard (Wo, 0) '-tree, po C FTr'(Q)NNo.] 

At stage ~ = so + 1 of the construction: 

We have defined a standard ('woo, (~o)'-tree T~o ~ N~o+l and 

~Oao = (p~O: t e T~o} e FTr'(Q) M Nao+l. 

Now we consider two cases. 

I f  a0 C X (so Xc~o+ 1 is (A, S0)-good), then we apply the procedure of A.3.6 

inside N~o+2 to T~ o,/)~°, (Wc.o+I,O~ 0 Jr 1) and N~o+I (in place of To,/3, (w t , a l )  

and N there) and we get a standard (W~o+>C~o + 1)~-tree T~o c N~o+2 and 

~o+1 = \Pt/-~°+l : t C T~o+l) E FTr'(Q) n Noo+2 satisfying the demands A.a.6(e) 
and A.a.6(a) (c). 

I f  so ~ X, then we define T~o+l as above but we cannot put any new gener- 

icity requirements on p~o+a so we just let. p~O+l = p~,O Frk~o+l(t) where t' = 
projT;~+l (t). 

[Note that in both cases T~o+l E N~o+2 is a standard (w~o+l,SO + 1)~-tree, 

projection of T~o+l onto (Wao,aO) is T~ o, p~o+l E F T r ' ( Q ) n  N~o+2 and 

~ao ~proj;:o+t /~oe0q-l.] 

At limit stage a of the construction: 
t - -  

We let T~ = lim((T/~ : /3 < ~}) E Na+l and we choose i6 ~ = {P7 : t c Ta} C 

FTr'(Q) n N~+l applying A.3.5 in N~+I. 

[Note that the corresponding inductive assumptions hold true.] 
/__ 

After the construction is carried out we may let T~ = lim((T~ : c~ < ~)). Then 

7~ is a standard (w~, k)%tree, but we no longer have ]]T~[] _< A. 

Now, by induction on c~ C tvx O {y} we choose conditions q~ and Ii~a-names 

~'a,  ~o  and t~ such that 

(a) II-e~"t, E Tx & rkx(t~) = a" ,  

(b) It-s~"t/3 = ~o I3" for fl < a, 

(c) qa E P~, dom(qo) = wx n a, 

(d) if/3 < a then q~ = q~ [fl, 

(e) q~ e~ u .,-~ ,~ ~ Ge~ for each i < )~, 
proj 7"/ (-~) 
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(f) for each/3 < a, /3 E zt,~ 

q~ IF~%"~r~ = {i < A: (_t~+l)~(i) ~ *} E Da and the sequence 
• i+l  

(((t/3+l)/3($),Pproj%+l.T;~ Q~+,)(/3)) : i < /~) 

is a result of a play of the game 

O(~N~[GP zl:i<_)~),D,}'~ \ ('io+ l ),~ ( g f l '  io P .% p,o~T,o ¢,~+,) (/3)1' 

[as described in A.1.18 where io < A is the first such that/3 E wio] 

won by player COM", 

(g) the condition qa forces (in Pa) that 

"the sequence (Ni[_Ge~] : i < A) is (A,n ,S>D,  _Q~)-suitable and }~'~ E Da 

is such that _Y~ C_ X and for every i E y~  we have 

(N~+l[_Gp~]) <~ _C Ni+I[_G~%] and Ni+I[_G~%] OV = N~+I 

and i E ~ for all ~ E (~ M wi (hence Nx[G~%] 0 V = N~)"  

C a s e 1 :  c~=0. 

We do not have much choice here: we let qo = 0, _to = 0 E T~ and ['o = X. Note 
that clauses (a)-(e) and (g) are trivially satisfied (for (g), remember that (& X) 

is a suitable basis for N) and clause (f) is not relevant, 

Case2: c~ = /3 + 1 .  

Arriving at this stage we have defined q/3, t./3, ~"/3 and X¢ for ~ </3, and we want 

to choose q/3+l,t/3+1, _Y~+l and ~';~. 
Suppose that G~ c_ P2 is a generic filter over V such that q~ E G/> Then (by 

clause (g) at stage/3) we have 

V[G/j] ~ " t h e  sequence (Ni[G~]:  i < A)is (,~, g, $1, D, _Q~)-suitable 

and (& .~c;~ /3 ) is a suitable base for it 

and (Vi E g~ ' ) (V(  E /3 n w~)(i E ~ '~)" .  

Let i0 = min{ j  < )~ :/3 E wj }. We know that the player INC does not have any 
winning strategy in the game 

io G~ (/3/ (N~[a~]:i<_x),o,Y~e\(io+l),a proJTio Lt ~ ) ) / 

Now, using the interpretation of the game presented in A.l.18, we describe a 
strategy for player INC in this game. 
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T h e  s t r a t e g y  is: during a play COM constructs a sequence ~ = 

(s(i) : i < A) of elements of 9 ~  z U {*}, those are his moves; let 

def .%, ~ 
ri = p r o j ~ ( t  ) (gli) • Ti 

(more pedantically: Dom(ri )  = wi N a = Doln(pro j~  ~ ~ ) ) t 2  {/3}, 

ri e T~, p r o j ~  (t~ ' ' )  C_ 'ri, 'ri(/3) = .~[i), and at the stage i < A of the 
i+1 ~ G~ game INC answers with (Pr ,+ , ( / ) )  • 

We have to argue tha t  the s trategy described above is a legal one, i.e., tha t  

it always tells INC to play legal moves (assuming tha t  COM plays according to 

the rules of the game). For this, we show by induction on i < A tha t  really 

ri • Ti and tha t  if s(i) ¢ *, then w,'(°i+li+, (/3)) Go • Xi+2[G~] A 9/3 is the least 

upper bound of  a  -generic filter over X,+ ,  (to which belongs)  and 

if s(i) = *, then (,i+1 ]c.~ is the least, upper bound of conditions played by INC \/~ri+l ] 
so far. 

First note tha t  s(i) = * for all i _< i0 and therefore rio+l • Tio+l (just look at 

the successor stage of the construct ion of the T~'s; remember  tha t  dom(_t~ B) = 

'w~ N/3, so adding *'s at level/3 is allowed by A.3.6(c)). Note tha t  , io+l  (/3) = 1~1"i0+1 
io I) .T~ c,~,(/3) (rememt)er A.a.6(c)(iv)).  
proJz~ ° L~ J 

If i < A is a limit ordinal above i0, and we already know tha t  rj • Tj for each 
+-- 

j < i, then r i • Ti = lim((Tj : j  < i)) as clearly 

jo < j l  < i :::> t)roj~;  (rj~) = rjo. 

Note that,, by the limit stage of the construct ion of the Ta's and A.3.5(3) (actually 

by the construct ion there),  the condition p~.,(/3) is the least upper bound of 

(~:j (/3): j < i) in ~Q/i " 
Suppose now that  we have 'ri • Ti, i0 < i < ~ and the player COM plays s(i). 

If s(i) = *, then easily r i+1 • Ti+l as adding stars at "top levels" does not make 

any problems (compare the case of i0). Moreover, as there, we have then 

i+1 i i 
= (9).  P;'~+I (/3) = p 

proj 7-i 

If s(i) # *, then s(i) • Ni+l [G/3] n Q ~  ~ is a condition stronger than all conditions 
i 3 played by INC so far, and thus it is stronger than p;~ ( f ) .  Moreover, in this case 

we necessarily have i • ~ z ~ ,  so i is limit and therefore 'wi = wi+l. Hence 

(V( E Wi+l N/~)(i • X~;Z). By clause (f) for am we conclude tha t  (V¢ • Wi+l N 



72 S. S H E L A H  Isr.  J. M a t h .  

/3)((t~)~(i) ~ *). Therefore, if we look at the way T~+I was constructed, we see 

that there is no collision in adding s(i) at the top (i.e., it is allowed by A.3.6(e)). 
^ G~ 

Thus ri+l E Ti+l and by A.3.6(c)(ii) we know that ~+~-i+~ (/~) E Ni+2[Gz] M Q3 

is the least upper bound of a Q~-generic sequence over Ni+~[Gz] to which s(i) 
belongs (the last is due to A.3.6(c)(iii)). 

Thus we have proved that the strategy presented above is a legal strategy for 

INC. It cannot be the winning one, so there is a play ~ = is(i) : i < A) (we give 

the moves of COM only) in which COM wins. Let t~ = t~ ~ ~(~); pedantically, 
G~ 

Dom(t~) = Dom(t~ ' )  U {3}, t~ C_ t~, t~(3) = ~. We have actually proved that 

t~ E T~ = lim((T~ : i < A)). It should be clear that rkA(t~) = c~ and t~ ~ = t~ I/~. 
• G B  

Further, let qa(/3) E Q ~  be any upper bound of g m QZ (i.e., of {s~: s~ ¢ *}; 

there is one as COM wins) and X~ be the set {i < A : s(i) ~ *} E D~. Note that 

(t~)(/3) (as these are answers of the player then qa (/3) is stronger than all PprojTT~ 

INC; see above). Lastly, if we let 1~ = X~ then we have 

q~(/~) I t - ~  "the sequence (Ni[Gz][GQ~ ]: i _< A) is suitable and (~, Y~) 

is a suitable base for it and (Vi E Y~) (V~ E a M wi) (i E A ~  )" 

(compare the arguments in the proof of A.1.13). This is everything we need: as 

GZ was any generic filter containing qz, we may take names _ta, XZ, ~_'~ for the 

objects defined above and the name for q~ (/3) and conclude that qz~q~ (~) forces 

that they are as required• 

C A S E  3: c~ is a limit ordinal. 

Arriving at this stage we have defined qz,_tz, ~_'Z and _Xz for fl E a A w~ and 
we are going to define q~, _ta and _Y~. The first two objects to be defined are 

determined by clauses (a)-(d). The only possible problem that may appear here 

is that  we want _t~ to be (a name for) an element of T~ and thus of V. But by 

A.3.7(a) and A.1.10 + A.1.11 we know that the forcing with P~ adds no new 

sequences of length < n of elements of V (remember n = A+). Therefore the 

sequence (tz : fl E w~ M a) is a P~-name for a sequence from V and its limit _t~ is 

forced to be in 7~. Now we immediately get that qa, _ta satisfy demands (a) (f) 

(for (e) note that d°m(P~proj~-'~ (t~)) C_ w~ and 

(~1) for e a c h / ~ E a M w ~  a n d i < A w e h a v e d o m ( p  i ~-x ) C w ~  and 
pro jT  i ( t#)  --  

• • i P~p~oj~(t~)trki(pr°j~ ~(-tz)) = P p ~ o j ~ )  and rki(proj~(tZ)) >_/3, 
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hence we may use the clause (e) from stages/3 < ct). Finally we let 

}/~ de__f {i < I : i is limit and (V~ • wi n o)( i  • ~'~) and a • wi}. 

We have to check tha t  the demand (g) is satisfied. Suppose tha t  G~ C_ P~ is 

a generic filter over V containing qa. The sequence (~ '~" : ~ • w~ N a)  is a 

sequence of length < n of elements of V, and the forcing with Pa adds no new 

such sequences. Consequently 

If for j < A we let Zj  = ~ e ~ j n ~  S ~  ~ we will have 

(zj:j<a> v, and 

(as the filter Da is A-complete) and therefore (by the normali ty  of Da) 

ya._a _D A Zj  = {i < A : i is l imit  and (Vj < i)(i  E Z / ) }  e Da. 
j<x 

Next note tha t  (~, [ ' ~ " )  is a suitable basis for the sequence (Ni[Go] : i < A). 

Why?  Suppose that  i E }"~" and let t proj~+~ c ,  = " ( t ~ ) .  By the choice of the wi's 

we know that  Wi+l = 'u,i ( remember i is limit). Since ct E w i we have rki+l( t)  = a 

and since i E [~e~,,n~ "~'~" we have t¢(i) 7~ * for each ~ C wi VIc~ = wi+l Ma. So 

look now at the way we defined p~+l: we were at the case when f~+l was given 

by A.3.6(c)(ii). In particular,  the condition p~+~ C F'~k,+~(t) N N~+2 generates a 

Frk~+,(t)-generic filter over Ni+l.  We know already tha t  qc~,to satisfy (e) (or use 

just  (N)) and therefore p~+l C G , .  This is enough to conclude tha t  

Ni+,[G~]--I (7-/() ,) ,E,<~),  (Ni+I[G,] )  <~ C_ Ni+l[Ga], N i + t [ G a ] ~ V  = Ni+l 

(like in A.l .13) and therefore to finish the construction. 

To finish the proof  of this case of the theorem note tha t  our demands on the 

conditions qa imply tha t  each of them is (Nx, Pa)-generic, so in part icular  q~ is 

as required. 

(c) The  proof  is similar to tha t  of case (b) (and is not seriously used). | 

THEOREM A.3.8:  A s s u m e  A <~ = A, t~ = A + = 2 ~ ~ p*. Suppose that $o C 

(~<g,<h(#*))+, 31 E (~,<.k(#*)[SO]) +. Let  ~ = (]~i,gi : i < "y) be a (< t~)- 
support  iteration such that  for each i < 7 

basically (So, )-co pJete". 
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Then the forcing notion P~ is basically (So, S1)-complete. 

Proof: Similar to the proof of A.3.7 (but easier) and not used in our examples, 

so we do not give details. | 

A.4.  T h e  A x i o m  

Definition A.4.1: Suppose that  A <~ = A, ~; = A + = 2 x < #* and 0 is a regular 

cardinal. Let sO • (~<. ,<~(p*))+,  $1 • ( ~ , < a ( # * ) [ s O ] ) +  and let D be a 

function from $1 such that  each D~ is a normal filter on A. Let Axe(SO, $1, D),  

the forcing axiom for (So, $1) and O, be the following sentence: 

If Q is a really (So, ,~1, D)-complete forcing notion of size _< ~: and 

(Zi : i < i* < 0) is a sequence of dense subsets of Q, 

then there exist a directed set H C_ Q such that  

(Vi < i*)(H AZi ¢ O). 

THEOREM A.4.2: Assume that A, ~ = #*, 0 and (So, S1, D) are as in A.4.1 and 

< 0 = cf(0) <_ ,  = ~ 

(e.g., 
(®) So C S~, St = S~ \ So are stationary subsets of t~, So = So, ,~1 = 

{gt : ~ is an increasing continuous sequence of ordinals, ao • So, ai+l • So, 

a)~ • S l } ) .  
Then there is a forcing notion P of cardinality p such that 

(a) P satisfies the ~+-cc, 

(/3) 
(9 + ) 

(~) 
(~) 

, ~ " s 0  • ( ~ < ~ , < ~ ( , * ) ) +  ~ 31 • ( ~ < ~ , < ~ ( , ) [ s O ] )  , and even more: 

if  $;  C_ 81 is such that 3~ • (~<~,<x(#*)[sO]) +, 

then I~-~ 3~" • (~,<~(,*)[sO])+, 
Ax o (go, gl,  D), 

if (®), then all stationary subsets of ~ are preserved. 

Proof: It  is parallel to B.8.2 which is later done elaborately. | 

C a s e  B 

While C a s e  D (see the introduction; t~ inaccessible, S has stationary many 

inaccessible members) may be treated similarly to C a s e  A, we need to refine 

our machinery to deal with C a s e  B. Our prototype here is ~ is the first strongly 
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inaccessible cardinal, however the tools developed in this pa r t  will be applicable 

to cases A,  C,  D too (and other  s trong inaccessibles in C a s e  B,  of course). 

Our A s s m n p t i o n s  2: n is a s t rongly inaccessible cardinal  and it* > n is a regular  

cardinal.  

These assumpt ions  will be kept in the present  par t  (unless otherwise s ta ted)  

and we may  forget, to remind the reader of them.  

There  are two main  difficulties which one meets  when dealing with the present  

case. The  first problem, a more general one, is tha t  (< #)-completeness  is not 

reasonable even for # = R1. Why'? As we would like to force the Unifornfization 

P rope r ty  for (S~ : 6 E S), where S C_ {5 < t,: : cf((f) = ~0} is s t a t ionary  not 

reflecting. The  second problem is related to closure propert ies  of models  we 

consider. In C a s e  A,  when t; = A +, the demand  N <x C_ N was reasonable.  If  t; 

is Mahlo, IINII = N D n  is an inaccessible cardinal  < t;, then the demand  N <NnÈ C_ 

N is reasonable too; this is C a s e  D. However, if t; is the first inaccessible this does 

not work. (Note tha t  these models  are parallel of countable N -~ (7-/(-,), E, <~)  

of the case g = R1.) To handle these problems we will use exclusively sequences 

29 = (Ni  : i <_ c~) of models  and all action will take place at  limit stages only. 

For example,  we will have completeness  for 29 = (Ni  : i _< w} by looking at  N~, 

B U T  the equivalence class 2 9 / ~  will be impor t an t  too, where for two sequences 

29, 29~ of length w we write 29 ~ 29~ if 

(Vn E w)(3m E w)(N,~ C_ N ~ )  and (Vn E w)(3m E w)(N~ C_ N m ) .  

B.5 .  M o r e  o n  c o m p l e t e n e s s  o f  forc ing  n o t i o n s  

In this section we introduce more notions of completeness of forcing notions. In 

some sense we will generalize and develop the notions introduced in section A.1. 

Defini t ion B.5.1: 

1. Let  29 = (Ni  : i _< c~) be a sequence of models  and g = (ai : i _< ct) be a 

sequence of elements of [#*]<~. We say tha t  29 obeys ~t with an error n E w 

if 

(vi < ~)(ai c_ N~ n ~* g ai+n). 

When  we say 29 obeys 5 we mean  with s o m e  error n E w. 

2. By ~<~(#*) we will denote the collection of all sets £ such tha t  

C {~ = (ai: i <_ ~ ) :  the sequence ~ is increasing continuous, 

c ~ < ~  and (Vi_<c t ) ( a iE[p*]<~  & a i D g e h : ) } ,  
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and for every regular large enough cardinal X, for every x E ~(~() and a 

regular cardinal 0 < t~ there are/Y and ~ such that 

(a) f i / =  (Ni : i < 0) is an increasing continuous sequence of elementary 

submodels of (7-/(X), E, <~) such that x E No and 

(vi < e)( r(i + 1) E N +I IIN II < 

(b) ~ = ( a i : i < 0 )  E~ ,  

(c) N obeys ~. 
^ _ 

3. If 0̀  E E, N is an increasing continuous sequence of elementary submodels 

of (~/(~), E, <~()such that (Vi+ 1 < ~g(N))(Nr(i  + 1)E Ni+l & IiNiiI < ~) 

and/Y obeys 0. (with error n, respectively), then we say that (/Y, 0 )̀ is an 
~-complementary pair (an (~, n)-complementarg pair, respectively). 

4. We say that a family ~ E ~<.(p*) is closed if for every sequence 5 = 

(ai : i _< a} E ~ and ordinals ~3, 7 such that /~ + ? _< a we have 

(or, in other words, ~ is closed under both initial and end segments). 

Remark B.5.2: 
1. Definition B.5.1 is from [12, §1]. 

2. The exact value of the error n in B.5.1(2) is not important at all; we may 

consider here several other variants as well. 

3. Note that Ni, I]NiII E Ni+l. Sometimes we may add to B.5.1(1) a re- 
quirement that 211N, II C_ ai+n (saying then that N strongly obeys 0`). Note 

that this naturally occurs for strongly inaccessible a, as we demand that 

0̀  E ~ =~ ai D g E n. So then 2 IIN~II E ai+n, but ai+n D t~ E /'~ SO we have 
2[INill C_ ai+n. 

In this situation, if X1 ( ~ are large enough, ~1 E No and for non-limit i, 

N~ is the closure of Ni N 7i()(1) under Skolem functions and sequences of length 

_< [[Ni][, and for limit i, N~ -- Ni n H(Xl), then the sequence (N~ : i <_ c~) will 

have closure properties and will obey 0̀  (as Ni E Ni+~, 7-/(Xl) E Ni+x imply 

Nil E Ni+l and so N~ C_ Ni+n). 
4. The presence of "regular 0 < ~" in B.5.1(2) is not accidental; it will be of 

special interest when ~ is a successor of a singular strong limit cardinal, as 

then 0 = cf(O) < ~ = #+ implies 0 < #. 

Definition B.5.3: Let ~ E ~<~(#*) and let Q be a forcing notion. 

1. Let f / =  (Ni : i <_ (~} be an increasing continuous sequence of elementary 

submodels of (7-/(X), E, <x) '  Q E No and 16 = (pi : i < 5} be an increasing 
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sequence of conditions f rom QNNa,  n E w. We say that /5 is (29, Q)'~ -generic 
if for each i < 5 

N ( i  + 1) • Ni+l  and Pi+n • N { Z  • Ni : Z is an open dense subset  of Q}. 

When  we say tha t /5  is (29, Q)* -generic we mean  tha t  it is (29, Q)n-generic 

for some n • w. We may  say then tha t /5  is (29, Q)*-generic with an error 

n .  

2. We say tha t  Q is complete for d if for large enough X, for some x • ?-/(X) 

the following condit ion is satisfied: 

,if 
(a) ( /9 ,6)  is an g - complemen ta ry  pair  (see B.5.1(3)), 6 • g, 29 = 

(Ni : i _< 5), Q , x  • No, and 

(b) 10 is an increasing (29, Q)*-generic sequence, 

then fi has an upper  bound in Q. 

3. We say tha t  a forcing notion Q is strongly complete for g if it is complete  

for g and does not add sequences of ordinals of length < n. 

Remark B.5.4: 
1. The  :r in definition B.5.3(2) is the way to say "for most" ;  compare  with 

0.20. 

2. In the present  applications,  we will have/1" = n and a s t a t ionary  set S C_ 

such tha t  

g~ 0e=f {6 :6  an increasing sequence of ordinals from n \ S 

of length < n with the last element front S} 

will be in £<~(/z*). The  forcing notions will be complete  for g}, so the 

i terat ion will add no new sequences of length < n (see B.5.6 below). On 

S the behavior  will be more interesting, as there we shall be doing the 

uniformization.  Thus  the pair  ( s,  S) corresponds to the pair  (So, $1) from 

the previous par t  (on Case A). See more fiflly later. 

For example,  if C6 C_ 6 = sup(C~), otp(C6) = cf(6), (V5 • S)(cf(5) < 5) and 

h ~ : C ~  ~ 2 t h e n  

Q = {g: for some c~ < ~, g : c~ - - +  2 and 

(V5 • (o~ + 1) n S)(V 7 • C,~ large enough)(g('7) = hs("7))} 

is such a forcing (but we need tha t  S is not reflecting or (C5 : 5 • S) is somewhat  

free, so tha t  for each c~ < n there are g • Q with dom(g)  = c~). 
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3. If we want to have S reflecting on a s ta t ionary set though still " thin",  then 

things are somewhat  more complicated, but  manageable,  see later. 

PROPOSITION B.5.5: Suppose that g E ~<~(#*) is closed and Q is a forcing 
notion. 

1. Assume (~t, N) is an (g, nl)-complementary pair, ~t E g, 2V = (Ni : i <_ 5), 
Q E No. I f p  C_ Q N N ~  is (fi¢,Q)~-generic (see B.5.3(1)) and q E Q is an 

upper bound of ~ in Q, then 

q ]~-Q "((Ni[GQ] : i < 5), ct) is an (~, nl + n2 + 1)-complementary pair". 

2. I f  Q is strongly complete for g, then I~-Q g E ~<~(p*). 

Proof." 1) Since ifi is (_~, Q)'~2-generic, for each i < (~ and every Q-name r E Ni 
for an element of V,  the condition Pi+n2 decides the value of r and the decision 

belongs to Ni+n2+l (remember Pi+n~ E Ni+n~+l). Now, by s tandard  arguments  

(like in the proofs of A.1.13.2 and A.1.13.3) we conclude tha t  for each i < 5 

Pi+n2+l IF-Q"Ni[GQ] Cl V C_ Ni+n2+l and Ni[GQ] < (~(X),  E, <~)V[G~] and 

(Nj[GQ]: j <_ i) E Ni+t[GQ]". 

Since ai+n2+l C Ni+n~+l C ai+n2+l+nl (for i < 5) we get 

q I~-Q "((Ni[GQ] : i _< 6), ~) is an (g, nl  + n2 + 1)-complementary pair".  

2) Suppose that  p I~-Q x E 7-/(X) and let 0 < n be a regular cardinal. Since 

E ~<~(#*) we can find an (g, n l ) -complementary  pair (N,  5) such tha t  ~g(N) = 

fg(~) = 0 + 1 and (p, x , Q , g )  E No. Now, by induction on i < 0, we define an 

(N, Q)l-generic sequence p = (p i : i  < 0): 

Pi E Ni+l N Q is the <~-first element q of Q such tha t  

(i)i p _< q and ( V / <  i)(pj < q), 

(ii)i q E ~{27 E N i :  27 C Q is open dense}. 

To show tha t  this definition is correct we have to prove that ,  for each i < 0, 

there is a condition q E Q satisfying (i)i+(ii)i  and Pli  E Ni+l. Note tha t  once 

we know this, we are sure tha t  the <~-first condition with these properties is in 

Ni+l and therefore PI(i  + 1) E Ni+l too. 

There  are no problems for i = 0~ so suppose tha t  i --- io + 1 and we have already 

defined Plio E N~o+l, and P io E N~o+l, and hence p[(io + 1) E Nio+l -~ Nio+2. 
The  forcing notion Q does not add new sequences of ordinals of length < n and 
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IlA][io+lll < h;. Therefore, we find a condition q E Q stronger than Pio and such 

that q decides all Q-names for ordinals from Nio+l (i.e., q E N{Z E Ni : 5[ C_ Q 

is open dense}). 

Suppose now that we have arrived at a limit stage i and we have defined/5 [i. 

Since (Nj : j <_ i} E Ni+~ we know that fi[i E Ni+1 (as all the parameters needed 

for the definition of/sIi are in Ni+l and we have no freedom left). Note that 

~t(i + 1) e ~ (as ~ is closed), (OI(i + 1), NI(i  + 1)) is an (g, nt)-complementary 

pair and the sequence Pli is (N [(i + 1), Q)S-generic. Since Q is strongly complete 

for g, we conclude that there is an upper bound to/sIi in Q, hence a <~-first one. 

Now it should be clear that such an upper bound P i satisfies (i)i+(ii)i (remember 

that N is increasing continuous). 

Now look at the sequence p = <Pi : i < 0}. Immediately by its definition we 

see that t5 is (2VI(0 + 1),Q)l-generic. Since Q is strongly complete for g we can 

find an upper bound q E Q of/5. Now, by the first part of the proposition, we 

conclude that 

q It-Q "(<Ni[GQ] : i _< (f), g) is an (g, nl + 2)-complementary pair", 

which finishes the proof. | 

THEOREM B.5.6: Suppose that g E £<~(/t*) is closed and (Pi,Qi : i < 7) is a 

(< n)-support iteration such that, for each i < 7, 

!~-~, "the forcing notion Q~ is strongly complete for ~". 

Then P~ is strongly complete for ~. 

Proof: We prove the theorem by induction on 7. 

CASE 1: 7 = 0. 

There is nothing to do in this case. 

CASE2: ~ = / : ~ + 1 .  

By the induction hypothesis we know that P/3 is strongly complete for g and 

therefore, by B.5.5, It-p~ g E ~<~(#*). 

Clearly the composition of two forcing notions not adding new sequences of 

length < h: of ordinals does not add such sequences. Thus what we have to prove 

is that I~+1 = F/3 * Qj3 is complete for g (i.e., B.5.3(2)). 

Let y E H ( \ )  be the witness for "P/3 is complete for g" and let ~ be a F/3- 

name for the witness for "Q~ is complete for g". We are going to show that the 
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g of B.5.3(2). So composition ]P/~+I = PZ * Q~ satisfies the condition (®)(v,_x,g,[%+d 

suppose that 
(a) (.N, 0.) is an E-complementary pair (with an error, say, hi),  y, x, E, P~+I C 

N o ,  = = 5 + a, 

(b) fi = (Pi : i  < 6) is an increasing (N, Pz+l)n2-generic sequence. 

It should be clear that the sequence (pi F9 : i < 5) is (~r, pz)n2_generic. There- 

fore, as PZ is complete for £ and y E No, we can find a condition q* E PZ stronger 

than all Pi F/3 (for i < 5). By B.5.5(1) we know that 

q* It-~ s "((Ni[Qp~] : i < 5),~,) is a n  (~,nl  + n2 + 1)-complementary pair". 

Moreover 

q* I~-~ "(pi(/3):/3<5) is an increasing 

(<Ni[G~] : i < 5>, Q~)'~2-generic sequence". 

[Why? Like in A.1.13.4, if Z c Ni is a P/3-narne for an open dense subset of Qz 

then the set 

is open dense in FZ+I; now use the choice of q*.] Consequently, we can find a 

I~-name T for an element of Q~ such that 

q* IF-~, "(Vi < 6)(pi(/3) <-9, T)". 

Let q = q* U {(/3, T)}. Clearly q 6 ~Z+l is an upper bound o f f .  

CASE 3: ~f is a limit ordinal. 
Let xz (for/3 < ?) be a ~z-name for the witness for IF-~ "QZ is complete for E". 

Let x = ((xz:/3 < 3'}, (PZ, QZ:/3 < ~/)). 

CLAIM B.5.6.1: Suppose that (/V, fi) is an £-eomplementary pair, gg(N) = 

gg(5) = 5 +  1, 5 is a limit ordinal and x G No. Further, assume that p -- 

(Pi : i < 5) C ~ is an increasing sequence of conditions from ]~ such that 

(a) (Vi < 5 ) ( f I ( i +  1) e Ni+~), and 

(b) for every/3 ~ 3, N N~ there are n < w and io < 5 such that 

(vi e [i0, I/3 e [ ' - ] {z  e : Z is an open  dense  subse t  

Then the sequence p has an upper bound in ~ .  

[Note: we do not put  any requirements on meeting dense subsets of~3!] 

Proof of the claim: We define a condition q ~ ~v. First we declare that 

dora(q) = N5 ~ 3' and next we choose q(/3) by induction on/3 ~ N~ ~ "~ in such 
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a way tha t  (Yi < 6)(pi {/3 <_~,~ ql/3). So suppose tha t  we have defined ql/3 E P/~, 

/3 E 3' M Na. Let n E w and io < 5 be given by the assumption (b) of the claim 

for /3 + 1. We may addit ionally demand tha t  /3 E Nio. (Note tha t  n, i~ -- 

min({i  : io _< i, /3 E Ni}) are good for/:~ too; remember  F~ ~ F~+l.)  Since g is 

closed we know tha t  (N[[io, 5], aI[i0, 5]) is an g-complementary  pair and the se- 

quence (pi[/3 : io <_ i < 5) is (2I[io,5],]?Z)n-generic. Consequently, by B.5.5(1), 

we get 

q I/3 lt-~,~ "(N[_Gp~] I[i0, 5], a I[i0, 5]) is an g-complementary  pair".  

Moreover, like in the previous case, the condition q I/3 forces (in ~Z) tha t  

"(pi(/~) : io < i < 6) is an increasing (2[_G~] [[i0, 5], 9Z) ' -gener i c  sequence". 

Thus, as x/3 E Nio and _Q/3 is a name for a forcing notion which is complete for g 

with the witness ~:/3, we find a Pz-name q(/3) such tha t  

all3 lt-p e "(Yi < 5)(pi(fl) <_~ q(~))".  

Now we finish the proof  of the claim noting tha t  if/3 E ~/M N~ is limit and for 

each a E /3 M N~, q Ia is an upper  bound to (Pi I~ : i < (f), then q I/3 is an upper  

bound of (Pi I/~ : i < (f) ( remember dom(pi) C_ N~ for each i < 5). I 

CLAIM B.5.6 .2:  Suppose that M -< (7-/(~), E, <~),  [[M H < t~, x E M andp  E 17~. 

Then there is a condition q E P~ stronger than p and such that 

(V/J E M n ~/)(q{/3 E N { z  e M :  z is an open dense subset 

P r o o f  of  the claim: Let 0 = c f (o tp (M N y)) and let (?i : i _< 0) be an increasing 

continuous sequence such tha t  ?o = 0, V0 = s u p ( M O ? )  and ?i E MM~/ (for non- 

limit i < 0). As g E ¢<~(p.*), we find 2 = (Ni : i < 0) and a = (ai : i < 0) E g 

such tha t  (?~ : i <_ O),x ,p  E No and (N ,a )  is an g-complementary  pair and 

M C_ No. The  last demand may seem to be too strong, but  we use the fact tha t  

g is closed, ai N t~ E n by B.5.1(2), and 

M E N '  < N "  -< (~ ( ' t ) ,  E, <~) & sup(N '  M ~) C_ N "  ::v M C_ N' .  

(Alternatively, first we take an g-complementary  pair ( 2* ,  ~*) such tha t  ~g(2)  = 

gg(a) = ]]MH + + 1 and (?z: i _< 0), x, p, M E N~. Next look at  the model  NI~MII+ 1 

it contains all ordinals below JIM]I, M and I]MII. Hence M C NITMII+ ~. Take 

2 -- 2 *  r[IIM[I + 1, IIMII + 0] and a = 5* r[llMII + 1, II /[I  + 0].) 
Next,  by induction on i _< 0, we define a sequence (Pi : i <_ O) C_ P.~: 
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p~ E P~ is the <~-first element q of P~ such that 

(i)i pI~/i <_p,~ qrT~ and (Vj < i)(p~ [7~ -<~% qIT~), 

(ii)i q[Ti E N{Z • Ni:  Z C_ P.~, is open dense}, 

(iii)i qt[~, ~) = PF['~, ~). 

We have to show that this definition is correct and for this we prove by induc- 

tion on i < 0 that there is a condition q E P~ satisfying (i)i (iii)i and p[i E Ni+l. 

By the way pi's are defined we will have that then/~F(i + 1) E Ni+l for i < 0. 

If i is not limit (and we have pj for j < i) then there is no problem in finding 

the respective condition q once one realizes that, by the inductive hypothesis of 

the theorem, the forcing notion P~ does not add new sequences of length < 

of ordinals and ]lNill < n. So we just pick up a condition in P~ stronger than 

the (respective restriction of the) previous condition (if there is any) and which 

decides all names for ordinals from Ni. This takes care of (i)i and (ii)i. Next, 

we extend our condition to a condition in P~ as the requirement (iii)i demands. 

Arriving at a limit stage i we use Claim B.5.6.1. So we have defined/JFi and by 

the way it was defined we know that ~ri E Ni+l (as all parameters are there). 
Since $ is closed we know that (N I(i + 1), fi I(i + 1)) is an g-complementary pair. 

Now apply B.5.6.1 to 7~, P,~,/)[i, N [ ( i +  1) and 6I ( i+  1) in place of ' / ,  P,,/~, ~r, 
and ~ there. Note that the assumptions are satisfied: for (b) use the fact that i 
is limit, so if/3 < Yi then for some j < i we have fl < 2/j and now this j works as 

i0 there with n = 1. Consequently, the sequence/5[i has an upper bound in IP,,. 

Now, similarly as in the non-limit case, we can find a condition q E P,  (stronger 

than this upper bound) satisfying (i)i (iii)i. 

Now look at the conditionp0 E P,. If~B E M A T  and i < 0 i s  such that 

fl < ~ ,  then p~ ['y~ decides all Pz~-names from Ni for ordinals. But M C_ No, 

Pi ITi <_~, Po I7~ and P/3 ~ P~. Hence Po I/~ E N{Z E M : if _C P~ is open dense}. 
As Po is stronger than p, this finishes the proof of the claim. I 

CLAIM B.5.6.3: P~ is complete for g. 

Proof of the claim: We are going to show that P~ satisfies the condition (®)~,g) 

of B.5.3(2). So suppose that (N, a) is an g-complementary pair, N = (Ni : i < 6), 

x ,g  E No and i~ = (pi : i < 5) is an increasing (fi/,Pz)'l-generic sequence. For 

i < 5 let 

Z.[ de__=f {q E P.y : (V~ E NiN'~)(qF/3 E N ( Z  E Ni:  Z C_ ?~ is open dense in P~})}. 
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Note tha t  Claim B.5.6.2 says that  each 55~ is an open dense subset of P~. Clearly 

55[ is in Ni+l ,  as it is defined from Ni. Hence, for each i < 6, P i+l+n~ E J[~. Now 

look at the assumptions of Claim B.5.6.1: bo th  (a) and (b) there are satisfied 

(for the second, note tha t  if/3 E N5 M ~ then we may take i0 < 6 large enough 

so tha t /3  E Nio and let n = nL + 1). Thus we may conclude that  i5 has an upper 

bound in P~. | 

CLAIM B.5.6 .4:  Forcing with P~ does not  add new sequences of  length < ~ of  

ordinals. 

Proof  of  the claim: First  note tha t  for a forcing notion P, "not adding new 

sequences of length 0 of ordinals" is equivalent to "not adding new sequences of 

length 0 of elements of V" .  Next note that ,  for a forcing notion P, if 0 is the first 

ordinal such that  for some P-name T and a condition p E IP we have 

p I F - ~ " 2 : 0  ~ V  and ~ V " ,  

then ef(O) = O. [Why'? Clearly such a 0 has to be limit; if ef(O) < O, 

then take an increasing cofinal in 0 sequence (~i : i < cf(0)} and look at  

(rF(i : i < cf(0)). Each r [ ( i  is forced to be in V,  so thc sequence of them 

is in V too a contradiction.] Consequently, it is enough to prove tha t  for ev- 

ery regular cardinal 0 < n, forcing with P~ does not add new sequences of length 

0 of elements of V. So suppose that ,  for i < 0, 7i is a P~-name for an element of 

V,  and p E P~. Take an g-complementary  pair (N,  ~) such that  N = (Ni : i _< 0} 

and x ,p ,  (ri : i < O} E No (exists as g E ¢<~:(p*)). Now, by induction on i _< 0, 

define a sequence (Pi : i _< 0} C P~: 

* S Pi E ~ is the <x-fir' t element q of P.~ such tha t  

(i)i p <_~% q and (Vj < i)(pj <_~ q), 

(ii)~ if/:? E 2Vi A 7 then q[/3 E N{55 E N~ : 55 C P~3 is open dense}, 

(iii)i q decides the value of 7i (when i < 0). 

Checking tha t  this definition is correct is s traightforward (compare with the 

proof  of B.5.6.2). At successor stages i < 0 we use B.5.6.2 to show tha t  there is 

a condit ion q~ E P ,  satisfying (i)i+(ii)i  and, next,  we extend it to a condit ion q 

deciding the value of Ti. At limit stages i _< 0 we know, by the definition of/~[i, 

tha t  for each j <_ i, ~[j E Nj+I.  Moreover, we may apply B.5.6.1 to fi/I(i + 1), 

~,I(i + 1) and/~[i  to conclude that /~[ i  has an upper  bound q~ E P~. Now take 

q _> q' which decides the value of Ti (if i < 0) it satisfies the demands (i)~-(iii)i. 
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Finally, look at the condition Po • P~: it forces values to all Ti (for i < 0) and 

so Po H-e, (ri : i < 0> • V, finishing the proof of the claim and thus that of the 
theorem. | 

Definition B.5. 7: 

1. Let ¢<~(#*) be the family of all subsets of 

{~ = (hi: i <_ a} : the sequence ~ is increasing continuous, 

c~ < t~ and (Yi _< a)(ai E [p*]<~ & ai n ~ • ~)}. 

2. Let ~ / =  (M~ : i < a) be an increasing continuous sequence of elementary 

submodels of (7-/(X), • ,  <~), go, gl • ¢<~(P*). We say that h:/ is ruled by 

(£0, gl) if 
(a) -g/F(i + 1) • 21///+1, liMiii[ < n and 211M, II + 1 C_ Mi+l for all i < a, 

(b) (M~ n ~* : i ___ ~) • gl, 
(c) for each i < a (and we allow i = -1)  there is an go-complementary 

pair ( ~ i  5i) such that 

(a) gg(fi, ri) = g9(g i) = 6i + 1, cf((~i) > 2 IIMdl and, for simplicity, 5i 

is additively indecomposable, 

(¢~) 2f/F(i + 1) • N~, N~ = Mi+I and 

(7) IIN~II 2''M~'' + 1 C_ N/+i. 

The sequence (~i  : i < a> given by the clause (c) above will be called an go- 

approximation to M.  

3. E<*~(p*) is the family of all pairs ($o,gl) such that gO, gl • e<~(#*), go is 
closed and for every large enough regular cardinal ~:, for every x • 7/(X) 

there is a sequence 5~/ ruled by (go, gl) and such that  x • Mo and every 
end segment of if/ is ruled by (go, gx) (follows if ~1 is closed under end 

segments). 

Remark  B.5.8: 

1. Condition B.5.7(2)(c) is the replacement for 

IIN~+lll = A and (Ni+I) <~ C_ Ni+, 

in Case  A. Here, there are no natural closed candidates for Mi+~, as in 

that case. So we use a relative candidate. 

2. In B.5.7(2)(c)(7) we may put stronger demands (if required in applications). 

For example, one may consider a demand that [[X~[[ h*(IIM~II) + 1 _C X~+l, 

for some function h* : ~ ----+ ~. 
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3. Note tha t  if (go, g') C ¢<~s(/t*) then necessarily £o E ~<~(p*). 
[Why? If 0 = cf(0) < ~, x = (0, y} then fg(/9 c) > 0.] 

4. Note tha t  in examples there is no need to assume tha t  gl is closed under 
end segments as "complete for (go, gl)" (see B.5.9) is preserved, as this just 

restricts the choice of the "bad guy" INC of io (and so p) to those in the 
end segment. 

Definition B.5.9: Let (£o,gl)  E ~<*,~(p,*) and let Q be a forcing notion. 

1. For a sequence hrI = (Mi :  i _< ~} ruled by (go, gl) with an &-approximation 

* r) {iV i : i < ~) and a condition r C Q we define a game G~,(~v,:c<~)(Q, 

between two players COM and INC. 

The play lasts 6 moves during which the players construct a sequence 

(io,p, (Pi, qi : i o - 1  _< i < 6)) such tha t  i0 < 6 is non-limit, p C MioM 

Q, pc c Mi+l N Q, qc = (qc,~_ : ~ < ~i) C Q (where 6c + 1 = Cg(5(c)). 

The player INC first decides what is io < 3 and then it chooses 

a condition p E Q cl Moo stronger than r. Next, at the stage i C 

[io - 1, 6) of the game, COM chooses Pc E Q n Mi+l such that  

P <_Q Pc and (Yj < i)(Ve < ~j)(qj,~ <_Q P.i), 

and INC answers choosing an increasing sequence t/i = (qi,e : c < (~i} 
such tha t  Pi <Q qi,o and qi is (2V c [[a, 5c], Q)*-generic for some a < & 

The player COM wins if it has always legal moves and the sequence (Pi : i < 5} 
has an upper bound. 

2. We say tha t  the forcing notion Q is complete for (go, gl) if 
(a) Q is strongly complete for go and 

(b) for a large enough regular ~:, for some x E 7/(~,), for every sequence 
~:i r ruled by (go, gl) with an go-approximation (~ i  : i  < 5) and such 

tha t  x C Mo and for any condition r E QN Mo, the player INC DOES 

NOT have a winning strategy in the game G~3,(2~:i<~)( Q, r). 

PROPOSITION B.5.10: Assume 

(a) (go,g,) ~ ¢*<~(~*), 
(b) Q is a forcing notion complete for (g0, gl).  

Then IF-Q" (go,g1) E ¢<*~(,*) " 

Proof." Straightforward (and not used in this paper). | 
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B .6 .  E x a m p l e s  fo r  a n  i n a c c e s s i b l e  c a r d i n a l  n 

Let us look at  a variant  of the examples  presented in section A.2 relevant for our 

present  case. (Remember  B.5.8(4).) 

Hypothesis B.6.1: Assume tha t  t~ is a s t rongly inaccessible cardinal,  S C_ ~ is a 

s t a t ionary  set and C = (C~ : ~ c S) is such tha t  for each 6 E S: 

Ca is a club of ~ such tha t  otp(C~) < ~i, moreover  for simplici ty 

otp(Ca)  < min(C~), nacc(C~) _c n \ S and 

if a E nacc(C6), then c f (a )  > 2 m~x(anc~) and SNa is not s tat ionary,  

if a G acc(Ca) M S, then Ca = C~ M a.  

[Note tha t  if S does not reflect, then we can ask tha t  the assumpt ion  of the 

second demand  never occurs, hence the second demand  holds trivially]. 

Further ,  we assume tha t  C guesses clubs, i.e., 

if E C_ t~ is a club, 

then  the set {~ E S : Ca C_ E}  is s tat ionary.  

Moreover,  we demand  tha t  for every club E C_ n, the set n \ S contains arbi- 

t rar i ly  long (but  < ~) increasing continuous sequences from E.  

Definition B.6.2: Let n, S, C be as in Hypothes is  B.6.1 and let p* = n. 

1. Define 

~0 s = {6 = ( a i :  i _< "~):6 is an increasing continuous sequence 

of ordinals from n \ S, "y < n} 

~1 s 'C = {/3':/3' is an end segment  (not necessarily proper)  of /3~(~),  

for some 6 ~ S and /3  is the increasing enumera t ion  of C~ }. 

2. Suppose tha t  A = (A~ : 6 ~ S),  /~ = {h~ : 6  ~ S) and cf(0) = t~ < n are 

such tha t  for each ~ E S: 

A5C_6, IIA~ll<e+cf(5), hs:A~ ~0, a n d s u p ( A ~ ) = 6  

(so cf(~) < 0; we may  omit  the last demand  as only / i t s  ~, for S ~ = 

{~ ¢ S : (~ = sup A~}, affects the forcing). We define a forcing not ion 
s,o 

Q~,~: 

,0 is a flmction g:/~ > 0 (for some 13 < n) such tha t  a condit ion in Q~,~ 

(V6 E S O (/3 + 1))({~ C Aa :  h~(~) ¢ g(~)} is bounded  in 5), 
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t h e  o r d e r  < @ 0  of Q~_,o is the inclusion (extension). 
- -  A , h  

3. For A , / t  and 0 as above and c~ < n we let 

~(ff~,h,O def S,O = {9 : E dom(9)}.  

Remark B.6.3: One of the difficulties in handling the forcing notion QSA:,°._.. is tha t  
S,O the sets Z~ 'L° do not have to be dense in QA,~" Of course, if this happens  then 

the generic object  is not wha t  we expect  it to be. However, if the set S is not 

reflecting and 8 E S ~ S n aec(C~) = 0, then each 7Z~ 'L° is dense in Q~,O and 

even weaker conditions are enough for this. One of t hem is the following: 

(*) (A~ : 5 E S} is a-free, i.e., for every a < a there is a fimetion g such tha t  

dom(g)  = S M c, and 9(8) < 8 and the sets (A~ ".9(8) : 8 E S n a} are 

pairwise disjoint. 

We can of course weaken it fllrther demanding  tha t  (As : 8 E S n a )  has 

uniformization.  (So if we force inductively on all a ' s  this may  be reasonable,  or 

we may  ask uniformizat ion just  for our h~'s.) 

PROPOSITION B.6.4: (~2',~'ff'C) E ¢~<~(It*). 

Proof'. Immedia te ly  fi'om its definition we get tha t  £0 5' is closed. Suppose now 

tha t  -( is a sufficiently large regular cardinal  and x E 7/('4). First  construct  an 

increasing continuous sequence 17V = (Wj : j < a) of e lementary  submodels  of 

(7/(~),  E, <~) such tha t  z E W0 and for each j < n: 

IlWjll < t~, and Wj M h: = IlWjll, and 17V[(j + 1) E Wj+I. 

Note tha t  then, for each j < n, we have 2 IIW~ll + 1 c_ Wj+I .  Clearly, the set 

E = {Wj N a : j < a is limit} is a club of t¢ and so ace(E)  is a club of n as well. 

Thus,  by our assumpt ions  on C, (see B.6.1), we find 5 E S such tha t  C5 C_ aec(E)  

(then, of course, 5 E ace(E)  too). Let _~7I = (Mi : i _< o tp(Cs))  be the increasing 

enumera t ion  of 

{Wj : j < a a Wjr~lc e CsU{8} } .  

Fix i < otp(C~). Let j '  < j < a be such tha t  Wj, = M,i and Wj = M~+I, and 

let ct = 2I,fi+ 1 N n = Wj N n. Then  a E nacc(Cs)  n ace(E)  and, by B.6.1, a ~ S 

and the set S does not reflect at  ct. Consequently,  we find a club C i of a disjoint 

from S n a .  Let ~r4 = (N~ : e _< b~} be the increasing enumera t ion  of 

{W~ : j ' < ( < _ j  & w~ n a  E C~ U{~}}. 
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(Note that the set above is non-empty as a E nacc(E); passing to a cofinal 

subsequence we may demand that 5i is additively indecomposable.) We claim 

that the sequence M is ruled by (£0s,£1 s'C) and (.~i : i < otp(C5)} is an £0 s- 

approximation to 21~/. For this we have to check the demands of B.5.7(2). By the 

choice of the Wj's we have that the clause (a) there is satisfied. As (Mi n ~ : 

i _< otp(C~)) enumerates C5 U {(f} we get the demand (b) there. For the clause 

(c), fix i < otp(C~) and look at the way we defined /~i = (N / : ~ < 5~}. For 

each ~_5< 5i, N / N ~  e C i U { a }  C ~ \ S .  Hence (/Y~,(N~N~ : ~ _< 5i}) is an 

£oS-complementary pair. Moreover, 

cf(5i) ---- cf(a) > 2 max(anC~) = 2 M~n~ = 2 [[MiI[ 

(by B.6.1) and (fi is additively indecomposable. This verifies (c)(a). The clauses 

(c) (/~) and (c)(7) should be clear by the choice of the Wj's and that of ]V i. I 

PROPOSITION B.6.5: Suppose that A, h, 0 are as in B.6.2(2) and for each a < 
the set Z ~'~'° (see B.6.2(3)) is dense in ~s,o_ a "~A,h (e.g., S does not reflect). Then the 

•s,e is complete for (£o s, £s1'c ). forcing notion "~ g,h 

Proof'. We break the proof into three steps checking the requirements ofB.5.9(2). 

CLAIM B.6.5.1: ~s,o is complete for £o s. -~A,h 

Proof of the claim: Suppose that (.N, 5) is an £0S-complementary pair, fi/ = 
(Ni : i _< 5) and/3 = (Pi : i _< (f) C_ Q~_,,o is an increasing (N, QgA'°~)n-generic 

def  
sequence. Let p = Ui<~pi. Note that p is a function from dora(p) = 

Ui<cdom(pi) to 0. Moreover, as the sets 7?_~Z,o are dense in Q~',° h (and Z~ Z'° C 
Ni if a C Ni n ~), we have Ni n n C dom(pi+n) C_ Ni+n+l. Hence 

dom(p)=  U N i f l n = N h G g e g "  
i<5 

Note that N~Nn ~ S (by the definition of£oS). Suppose that a E SN(dom(p)+l) ,  
S,0 

so a E dora(p). Then for some i < 5 we have a E dom(pi) and, as Pi C Q$,~, the 
S,O 

set {~ E Aa : h,(~) ~ p(~) = pi(~)} is bounded in a. This shows that p C QA,h 

and clearly it is an upper bound of f .  I 

CLAIM B.6.5.2: Forcing with ~s,o_ does not add new sequences of length < t¢ 
"~A ,h 

of ordinals. 

Proof of the claim: Suppose that  ~ < a and T is a Q~'~h-name for a function 

~,e_ Take an increasing continuous sequence I]V = from ~ to ordinals, p ~ "A,h" 
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. $ 0  
<Wij : j < ~> of e lementary  submodels  of (7-/('(), E, <x)  such tha t  QAA, p, T E Wo, 

+ l C _ W o a n d f o r e a c h j <  

IIW~ll < ,~, and ~5 n,~ = IIW~II, and 17~[(j + 1) E Wj+I.  

Look at  the club E = {Wj N n : j < n}. By the last a ssumpt ion  of B.6.1 we find 

an increasing continuous sequence (j~ : ~ _< ~) such tha t  {Wjent~ : ~ <_ ( } N S  = O. 

Now we build inductively an increasing sequence (p~ : ~ _< ~) of conditions from 

s,o <_Q~',o Po and for each ~ < ~: QA,~ such tha t  p ~,h 

1. p~ e 14/[j~+i, 

2. p~ forces a value to _r(~), and 

3. Wje N n C dom(p~).  

There  are no problems with carrying out the construct ion.  At a non-limit  

s tage ~, we may  easily choose a condition p~ in Wje+~ stronger  than  the condition 

chosen before (if any),  s t ronger  than  P0 if ~ = 0 and such tha t  Wj¢ a t~ c_ dom(p~) 
T A,~,o s,o ( remember  tha t  ~w~enK E Wj~+~ is a dense subset  of QAA) and p~ decides the 

value of r(~).  Arriving at  a linfit s tage ( _< ( we take the union of conditions 
S,O chosen so far and we note tha t  it is a condition in QA,~ as 

don,(U ;~) = U don,(p~) : U wj,  n , ~ :  w j ,  n ,~ ~ s. 
i<~ i<~ i<,I 

Now proceed as in the successor case. Finally, look at  the condit ion pc it 

decides the value of r (and is s t ronger  than  p). II 

CLAIM B.6 .5 .3 :  Assume that Af = (Mi : i <_ 6) is an increasing continuous 
sequence of elementary submodels of (H(~,), e, <~) ruled by ( goS,g~ 'c) with an 

~S_approxilnatio n (]~i : i < 6) and such that S, g6 ~, ~ ' , c  A, h, O, ~ '°~ E -/li0. 
.9,0 Let r E Q$,~ N Alo. Then the player COM has a winning strategy in the game 

g ,  _ s',o 
M,(N ~ :i<fi) (Q.~,~,, r) .  

Proof of the claim: First,  we are going to describe a s t ra tegy  for player COM 
s o  in the game Gf1,<R~:i<~>(Q£~, r), and then we will show tha t  it is a winning one. 

Since (-~li : i <_ 6) E ~s',C' and, for each a E S, o tp (Ca)  < a (see B.6.1) we 

know tha t  6 = otp(CM~n~) < M~ r~ n E S. Recall otp(C6) < min(C6).  Let 

zdefU{AM~N~: : "i ~_~ ~ A:IiI~I.;E S}.  

Note tha t  IlZJl < 6.0 < IlM~oll as IA~I _< O + c f ( a )  for every a E S. By induction 

on i < 0 + choose an increasing continuous sequence (Zi : i <_ 0 +) of subsets of h: 
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such that Zo = Z and Zi+: = Zi U U{A~ : a ~ S & a = sup(Zi n a)}. Clearly 

[Z~ I _< 5 . 0 .  Iil for each i _< 0 + and if a = sup(a fq Zo+ ) then A,~ C_ Zo+. So as 

[A~ I _< 0 we have 

a e S & c r = s u p ( Z o + n a )  ~ A ,  C_ Zo+. 

Now, in his first move, player INC chooses non-limit io < 5 and p E Q~',~ n Mio 

stronger than r. We have assumed that each Z~ 'h'° (for ~ < to)is dense in ~ ' °£ ,  so 

we have a condition p+ e Q~-'~ stronger than p and such that M~ N n e dom(p+). 

In the next steps, the strategy for COM will have the property that for each 

i > io - 1 it says COM to play a condition pi C ,~ such that 

(57)~ Zo+ n M/+: C_ dom(pi) and Pi IZo+ = p+ I(Zo+ n M~+I). 

M. n ~  e- So, first the player COM chooses a condition Pio-1 E ~o "~A,h stronger than 

p and such that 

Zo+ N M~ o c_ dom(Pio) and P~o I(Zo+ N Mio) = p+ I(Zo+ N M~o). 

Why is it possible? We know that 

IZo+ nM ol < O + < Monte  < IIM oll < cf(5/o-~) 

(where 5~o_: +1  = gg(]~io-:)) and therefore Ze+ nM, io C_ ..sN i°-1 for some : < 5i o. 
_ hTio -- 1 S,O Taking possibly larger : we may have dora(p) C N~ o-1 too. Let p' C ~,~+1 nQ~ A 

be such that p < p' and )V i ° -1  n t~ C dom(p'). Let 

Pio = (p'[(dom(p') \ Zo+)) U (p+IZo+ N g ~ ° - l ) .  

~TCo - -  I Note that Pio: dom(p~o) > 0 is a well defined function such that Pio E "'~+t 
N~o- t and (for the last remember B.5.7(2)(c)(7): we are sure that  Ze+ NN~ °-1 E ..~+: 

P+ F(Z0+ n N~ °-1) G N~°+-i :, as IIN~°-:l] 5°+ + 1 c_ N~_-~:). Finally, to check that 

Pio is a condition in Q~'~ suppose that 7 c S n (dom(pio-1) + 1). If A~ c_ Z0+ 

then Pio FAy = p+ rA~ and the requirement of B.6.2(2) is satisfied. If A~ is not 

contained in Zo+ then necessarily Zo+ N 7 is bounded in 7 and we use the fact 
S ,0  that  Pio-: I(A7 \ Zo+) = p'F(A.~ \ Ze+), p' E Q~,h" 

At a stage i E [i0, 5) of the game the player COM applies a similar procedure, 

but first it looks at the union p* = Uj<i [-J¢<hj qJ,: of all conditions played by his 

opponent so far. If i is not limit then, directly from B.6.5.1, we know that  p~ is 
S,O a condition in Q~,~ (stronger than r). But what if i is limit? In this case the 

demands ([~)j for j < i help. The only possible trouble could come from AM~A~ 
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when Mi N n E S. But  then the set Zo+ contains AM, n~ and, by (17)j for j < i, 

* A p+ Pi [ M~n~ = [AM~n~. This  implies tha t  the set. 

{( c AM, n ,  : hM, o~(()  ¢ p~'(()} 

S,0 is bounded  in Mi N h:. Hence easily p* E Q~,~. Next,  player C O M  extends the 
* i S,O condit ion pi to pi E N~+ 1 NQ~,5  (for some ¢ < 5i) such tha t  the demand  ([2) / is  

satisfied, applying a procedure  similar to the one described for get t ing P~o. 

Why  is the s t ra tegy described above a wimfing s t ra tegy?  Suppose tha t  

(pi : i 0 -  1 < i < 5) is a sequence const ructed by COM during a play in 

which it uses this strategy.  As it is an increasing sequence of conditions and 

Ui<5 dom(pi)  = M5 N ~, the only thing we should check is tha t  the set 

e ¢ (U 
i<5 

is bounded  in M5 n n. But  by the choice of Z C_ Zo+, and by keeping the demand  

(Fq)i (for i < 5) we know tha t  

i<5 

so the choice of p+ works. 

This  finishes the proof  of the claim and tha t  of the proposit ion.  I 

I 

Now, let us turn  to the applicat ions for Abel ian groups (i.e., the forcing notions 

needed for 0.11). We contimle to use Hypothes is  B.6.1. 

Definition B.6.6: Assume tha t  G is a s t rongly h:-free Abelian group and h: H ont~ 

G is a h o m o m o r p h i s m  onto G with kernel It" of cardinal i ty < n. We define a 

forcing notion I?h,H,C: 
a c o n d i t i o n  in Ph.,H,C is a function q such that. 

(a) dom(q) is a subgroup of G of size < n, 

(b) G~ dora(q) is h:-free, 

(c) q is a lifting for dom(q) and h: H > G; 

t h e  o r d e r  <-Ph,,,c; of Fh,H,(; is the inclusion (extension).  

Hypothesis B.6.7: Let C = (G~ : i < n} be a fi l tration of G, r[c] c_ s (modulo 

the club filter on h:). So, wi thout  loss of generality, "y[G] C_ S and ~'[G] is a 

set of linfit ordinals. Let. h - l [Gi ]  = Hi. Not. a great  loss if we assume tha t  

5 E S ==v C5 n S = 0 (so S does not reflect in itself). 
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PROPOSITION B.6.8: For each a < n the set 

P~h,H,G de__f {q • Ph,H,G : (3i < n)(dom(q) = Gi+l & i _> c~} 

is dense in ~h,H,G. 

Proof'. Let q • ~h,H,G and let i < n be such tha t  dom(q) C_ Gi and i > a .  Then  

G~ dora(q) is n-free and so Gi+l/dora(q) is free. Now consider the mapping x ~-~ 

x + dom(q): Gi+l ) Gi+l/dom(q) .  So by 0.8 we get tha t  Gi+l = dom(q) + L 

for some free L (L ~- Gi+l/dom(q)) .  Consequently, there is a lifting f of L and 

now (f ,  q} extends q and it is in ~h,H,a" | 

PROPOSITION B.6.9:  The forcing notion IPh,H,a is strongly complete for go s. 

Proof." The  two parts, not adding bounded subsets of ~ and completeness for 

g0 s,  are similar to those for uniformization, so we do just  the second. 

Assume now tha t  ?~ is a regular large enough cardinal, Ni < (7-/(;t), E, <~),  

2) = (Ni : i <_ 5), 2)F(i + 1) • Ni+l, Ni A n • n is limit, 2) obeys ~ • g0 s 

and p = (Pi : i < (~) is generic for 2) with error n, let 7i be minimal such that  

dom(pi) D_ G7~+1 & Nj N n <_ 7i, & J + n >_ i if possible, zero otherwise (no big 

loss if we assume tha t  always the first possibility occurs). In particular,  Pi • Ni+l 

and as 7i is computable  from a,  pi, 2)[(i + 1) we know tha t  7i • Ni+l. 
Let /3i = sup(N/C~ n) (so the sequence (/~i : i _< 5) is increasing continuous).  

Note tha t  

Pi+n • N { Z  • N i + I :  Z C Vh,U, G is open dense} 

and Ni,/3i • Ni+l. Moreover, the set 

Z~ = {q • Ph,H,G : dora(q) _D G~,+I} 

is open dense in Fh,g~a. So pi+n • 2f~ • Ni+l and 7i+n ->/3i. Now, dom([.Ji< ~ Pi) 

= GU~<~(~+I) and U i < 5 ( 7 i + 1 )  = [.Ji<5/3i = N s N n .  Since N s A n  ~ S and 

S _D F[G] we conclude N5 N n ~ F[G], and thus GN~n~+I/GN~n, is free. So we 

can complete to a condition. | 

PROPOSITION B.6.10:  The forcing notion Ph,n,a is complete for (g0 s, g S). 

Proof" Suppose that  ill  = (Mi:  i _< (f) is ruled by (go s, g~). So Mi C-I ~ = ai and 

M i+1 = U~<cf(a~+l)N~ and (2)i, ~i) is an g0S-comptementary pair, D i E go s (also 

for i = - 1 ) .  

We are dealing with the case 5 E M0. Recall: 
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CLAIM B.6.10.1:  For i < ~,:, there is G + such that  Gi C_ a + c_ Gi+l, Ila+ll _< 
Ila~ll + ~o a .d  a~+~/a~ is free. (Of course, if i ~ S is non-limit then G+/Gi is 

free.) 

Proof of the claim: Since Gi+l is free we may fix a basis (xi,~ : c < ~'i41) of it. 

Choose Ai C_ ei+l such tha t  IIA~ll _< Ila~ll and Gi c_ ({zi,~ : e • Ai}}a (and call 

the last group G+).  Then  G~+L/G + is freely generated by 

{Xi, s -~- G/+ : C • ~i+1 \ Ai} .  

The  claim is proved. | 

Let H + = h - l [ G  +] and wlog {Gi, G+: i < ~) • Mo. 

Thus if i < j then Gj /G + is free. All action will be in G+/Ga~ for limit i _< (f. 

Necessarily ai is a singular cardinal of small cofinality (_< (f < ao). [Remember 

ai = J~Ji f-1 I¢ and sup(J~Ji N h;) is a limit cardinal. Why?  If not, then there is a 

cardinal ~ such tha t  )~ < sup(~J i  N/¢) < )~+, SO there is 7 • Mi A ~ such tha t  

A < 7 < s u p ( M / n  n) < A +. Hence ~+ = II~ll + • M,, a contradiction.] 

We may have "a difficulty" in defining p i G + ,  so we should "think" about  it 

earlier. This will mean defining p[Ga¢+l, j < i. The  player. COM can give only 

a condit ion in Mj+I, and we will arrange that  our "prepayments"  are of "size" 

aj (so bounded in Mj+I and thus included in some N~, ( < cf (a j+l ) ;  they will 

even belong to it). 

Let r • Ph,tI,a CI Mo. [Remember: Gao/dom(r) is free, so there is a lifting.] 

Let  INC choose non-limit io < (f and p • Mio N Ph,H,G above p, and q0 = 

{qio,~ : ~ < 5~o-1) g eneT~ic for some end segment of Nio-1. 

We choose by induction on i • [io - 1, ~i] models B i -'~ (74(~,), • ,  <~) such tha t  

• p, a ,  M ,  < 2  ~ : i < 5>, <H~ : i <_ 5> . . . .  • t~ ,  

• the sequence (I3 i : i <_ 5} is increasing (but not continuous), 

• II~ll = ai + ] Dom(p)l,  I[NI + 1 c B~ and {Bj : j < i) • Bi, 

• BiNMj • M j + l i f i < j .  
(But see for additional requirements later.) 

The rest of the moves are indexed by i • [io - 1, (f) and in the ith move COM 

chooses Pi • M~ and INC plays 0 ~ = {q} : ~ < 5i) as in the definition of the game. 

Now COM will choose on a side also ]i • Ph,H,a for i • [io -- 1, 5) such tha t  

additionally: 

(*)l fi • I?h,It,G is a function with domain B i f l  G + ,  increasing with i, 

(*)2 ai C_ dom(~fi),  

(*)3 f i  [a i+l  = f i  I ( a i+ l  f-I/3i) belongs to  ~h,H,G and  is be low Pi. 
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Note that 

(®) Bj AM/+1NG+~ is a subset of GM~+,n,~ of cardinality ]]MjI] < cf(Sj), hence 

it belongs to Mj+I. 

For i = io - 1 let rio-1 E Ph,H,a be above p and have domain Bio-1 N G +~, 
. . 2 1 1 M i o - - 1  II 

and let Pio-1 = foI(Bio-1 n G+~ n Mio). Clearly [Mio] C_ M~io, and 
IIBio-~ll = a~ and P~o-~ is a function extending p, its domain belongs to M~o 

and it is a subgroup of G+~. Consequently, Pio-1 a lifting and is in Mio. By 

manipulating bases (or see [9]) we have 

• Dora(p) C Dom(fi) C G + , 
- -  - -  a 5  

• Ga~/(Ga~ N as G+~/Dom(fi) = + + Bio-1) is free G+ is free and G+~ E Bio-1, 

• Dom(fi)/Dom(pi) is free as it is equal to G+~ n/3/o_1/(G+~ N Bio-1 AM/o) 

and G+~ N Mio C_ G + and they belong to /~io-1, and G+~/(G+~ n Mio) is 

free as Mio n n ¢ S, so n-free. 

-' ~ 5i). Let ' = U¢<~ q¢- For i = j + 1 > io we have fj, p/ and qj = (q : ~ < q) So as 

dom(q~) = aj+l = a i¢  S (by the choice of ~,), clearly q~ E ]Ph,H,G. We have to 

find p~ E Ph,H,a N Mi+l above qj and fj IM~+I (and then choose fi). Clearly the 

domains of q~, fj  IMi+l are pure subgroups, Dom(q~) = G n Mi = GM, n,~ = Ga~ 
and Pi, fj IMj agree on their intersection (which is 13/n Mj+~). Hence there is 

a common extension p~, a homomorphism from G~, + (t3j N M~+l) to H, which 

clearly is a lifting. Does p~ E ]?h,n,a? For this it suffices to show that the group 
Gaz/Ga~+~ is free, hence G+/doln(p~) is free. But + + (G+~/Ga~+~)/13jN(G+~/Ga~+~) 

is free (see [9], Axiom VII). Therefore G+~/(Bj n G + + Gaj+~) is free. Also 

is free (see [9], Axiom VI). Together, G+~/(Bj NGa,+l +Ga~+l ) is free as required. 

We are left with the case of l imit i .  Let q~=U{q~ : i o - 1  < j < i } .  Then 

q~ is a lifting for Gag. Now clearly f~ = U{fj : io - 1 _< j < i} is a lifting for 

G+~ n Uj<i~3j, also G+/dom(f~) is free (see [9], as above) and G+ E Bio-1, 

IiGa+ ]] = IiGa~ ]] C_ Uj<i Bj. Hence G +a~ C_ Uj<i ]~J and therefore G +a~ C_ dom(f[) 

and we can proceed to define Pi as above. 

Having finished the play, again U{fJ : io - 1 < j < 5} E Ph,H,a (as in the limit 

case) is an upper bound as required. I 

Remark B.6.11: In this section, we can replace $1 by any ~1 s defined below (or 
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any subset  which is rich enough): 

gl s = {c) = (ai:  i _< 5): 6 is an increasing continuous sequence 

of ordinals fl'om n, a.i+l ~ S, c f (a i+l )  > ai and 

S M ai+l  not s ta t ionary} .  

B.7 .  T h e  i t e r a t i o n  t h e o r e m  for i n a c c e s s i b l e  t~ 

In this section we prove the preservat ion theorem needed for our present  case. 

Like in C a s e  A,  we will use trees of conditions. So, our way to prove the i terat ion 

theorem will be parallel to tha t  of C a s e  A. 

PROPOSITION B.7.1:  Assume that g E ~<~(#*)  is closed and 

is a (< ~;)-support iteration of forcing notions which are strongly complete for g. 

Let T = (T, <,  rk) be a standard (w, ~o)'Y-tree (see A.3.3), IIrll < ~, c_ ~, ~o 

an ordinal, and let p = (pt : t E T) E FTr~(Q). Suppose that Z is an open dense 

subset oflP~. Then there is q -- (qt : t E T) E FTr ' (Q)  such that p <_ ~ and for 

each t E T 

1. qt E {q I r k ( t ) :  q E Z}, and 

2. for each a E dom(qt) ,  either qt(a) = pt(a) or IF-p~ qt(a) E Q_ ~ (not just in 

the completion Q-a)" 

Proo~ Let (t~ : i < i( ,)} be an enumera t ion  of T such tha t  

(Vi,j < i(*))(ti < tj ~ i < j) .  

We are proving the proposi t ion by induction on i(*). 

CASE 1: i(*) -- 1. 

In this case T = {(}} and we have to choose q0 only, but  this is easy, as the set 

{q[rk((})  : q E / :}  is open dense in Prk(0 ). 

CASE 2: i(*) = i0 + 1 > 1. 

Let  T* = {ti : i < i0} and let T* = TIT*. Then  T* is a s t a n d a r d  (w, a0) ~- 

tree to which we may  apply  the inductive hypothesis.  Consequently,  we find 

<q~' : t E T*) E FTr ' ( (})  such tha t  for each t E T*: 

1. Pt _< q~ E {q l rk( t )  : q E Z}, and 

2. for each a E dora(q2), either q~(a) = pt(a) or IF-~, q;(c~) E Q~. 
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Let qO = U{q* : s < tio} (note tha t  s < tio ~ s E T*; and also 81 < 82 < 

t~ o implies q*i = q~'2 rrk '(sl) ,  hence easily q0 E PPrk(%))" Clearly qO and pt~o 

are compatible (actually qO is stronger than the suitable restr ict ion of Pt~o ) and 

therefore we may find a condition qt~o E Prk(tlo) (note: no primes now) such tha t  

qtio E {qFrk(t~ o) : q E Z} and qtio stronger than both  qO and Pt~o. Next,  for each 

t E T* let 
def . , 

at = qtio Irk(t  A tio) u qt [[rk(t N t~o), 7) > qt > Pt. 

One easily checks tha t  q = (qt : t E T)  is as required. 

CASE 3: i(*) is a limit ordinal. 

Let  0 = cf(i(*)) and let (i¢ : ~ < tg} be an increasing continuous sequence, io = 0, 

io = i(*). For a < 7, let ~:~ be a P~-name for a witness tha t  _Qo is (forced to 

be) strongly complete for ~ and let x = (x~ : a < 7}. Take an S-complementary  

pair (]V,~) of length 0 such that  (i¢ : ~ < O ) , p , Q , ~ , x , T  E No and ]ITII c_ No 

(exists as ~ E E<~(p*) is closed: first take a complementary  pair of length ]]T]I + 

and then restrict  it to the interval []ITII + 1, ]ITI] + 0]). 

By induction on ~ < 0 we define a sequence (~¢ : ~ < 0): 

q¢ = (qt¢: t E T) is the <~-first sequence ~ = (r t :  t E T} E FTr ' (Q)  

such tha t  

(i)¢ for every t E T: Pt < rt and (V~ < ~)(qt ~ < rt) and, if a E 

dom(r t ) ,  pt(a)  # r t (a) ,  then rt(o~) i s  a name for an element of _Q~ 

(not the completion),  

(ii)¢ ifi¢ < i < i(*) and sup{rk(t j )  : j < i¢ & tj < ti} < a < rk(ti) ,  

then rti (a) = Pt~ (a),  

(iii)¢ if i < i¢, then 

c (-1 {J  No: J c is open dense}. 

To show tha t  this definition is correct we have to prove tha t  arriving at a stage 

< 0 of the construct ion we may find ~ satisfying (i)¢-(iii)¢. Note that  once we 

know tha t  we may define q~ for ~ < ~, we are sure tha t  ( ~  : ~ < ~} E N¢+I 

(remember -Nr(~ + 1) E N¢+1). Similarly, arriving at  a limit stage ~ < 0 we are 

sure tha t  ( ~  : ~ < ~) E N¢+1. 

S T A G E :  ~ = O. 

Look at ~ =/5: as io = O, the clause (iii)o is empty  and (i)o, (ii)o are trivially 

satisfied. 
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STAGE: ~ = ~ + 1. 

Let T* = {ti : i  < i¢}, i0* = (qt ~ : t E T*}. We may apply the inductive hypothesis 

to T*, p* and 

Z* de_f f i  { j  E N~: ~" C ]~3~ is open dense} 

(remember i¢ < i(*) and P ,  does not add new < ~-sequences of ordinals, see 

B.5.6, so 2-* is open dense). Consequently, we find g = (st : t E T*) E FTr ' (Q)  

such tha t  for each t E T*: 

• q~t <- st E {qFrk( t ) :  q E Z*}, and 

• for each a E dom(st) ,  either qt~(c~) = st(c~) or IF-~ s t (a )  E Q a. 

For t E T \ T *  let at = sup{rk(t~) : i < i¢ & t~ < t}. Note that ,  for t E T \ T * ,  

r- ,  LJ{st~ : i < i¢ & ti < t} is a condition in P~ stronger than  So let ~t 

rt = U { s t ~  : i < i¢ & ti < t} U qf [[at, 7) = U { s t ~  : i < i¢ & ti < t} U Pt [[at, 7) 

for t E T " - T *  and rt = st for t E T*. It should be clear tha t  f = (rt : t E T )  E 

FTr~(Q) satisfies the demands (i)¢ (iii)¢. 

STAGE: ff is a limit ordinal. 

As we noted before, we know that  (q~ : e < ~} E N~+I for each ~ < ~. Hence, 

as T C No (remember  IITll c_ No and r E No), we have (qf : e < ~} E N¢+1 for 

each t E T and ~ < ~. Fix i < i¢ and let ~ < ( be such tha t  i < i~. Look at  the 

sequence (qt~ : ~ -< e < if}. By the choice of ¢ (see demands (i)s and (iii)e) we 

have tha t  it is an increasing (fir I[(, ¢), P,-k(t~))*-generic sequence (note no primes; 

if we are not in Q~, then the value is fixed). By B.5.6 the forcing notion ~rk(ti) is 

complete for g (and N~ contains the witness), so (qt~ : ~ -< e < ~) has an upper  

bound in Prk(ti)" Moreover, (by the proof)  for each a < rk(ti),  if q E P~ is an 

upper  bound of (q{i [c~ : e < ¢}, then 

q I~-~. "the sequence (qt~ ( ) : e < ()  has an upper  bound in Q~".  

Now, for t E T we may let d o m ( r t )  ---= U~<¢ dom(q~) and define inductively rt(a ) 
for o~ E dom(r t )  by 

if (Ye < ()(q~(o~) = p t (a ) ) ,  then rt(o~) = pt(o!), and otherwise 

r t ( a )  is the <j - f i r s t  P~-name for an element of Q .  such tha t  

rt Fa IF-p~ ( re  < ( ) (q[ (c  0 _<_Q~ r t (a ) ) .  

It is routine to check that  ~ = (rt : t E T) E FTr ' (Q)  and it satisfies (i)¢--(iii)¢. 
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Thus  our definition is correct and we may look at the sequence ~ .  Since 

Z E No, it should be clear tha t  it is as required. This finishes the inductive proof  

of the proposition. | 

Our  next  proposit ion corresponds to A.3.6. However, note tha t  the meaning 

of *'s is slightly different now. The difference comes from another  type of the 

game involved and it will be more clear in the proof  of Theorem B.7.3 below. So 

the T{ are supposed to code possible choices of the player COM in the i th  move 

in a play (see B.7.3) when N = Ni. 

PROPOSITION B,7.2: Assume that ~ E ~<~(p*) is closed and 

is a (< n)-support iteration and x = (x_~ : a < y} is such that 

I~-~ "_Q~ is strongly complete for ~ with witness x~" 

(for a < 7). Fur ther  suppose that 

(a) (N,  a) is an d-complementary pair, N = (N~ : i <_ 5}, and x, $, Q E No, 

(fl) T = (T, <, rk) E No is a standard (w, ao)'Y-tree, w C_ 7 N No, ][w[[ < cf((~), 

ao is an ordinal, as = ~o + 1, 0 E w, 

('~) P = (Pt:  t E T> E FTr ' (Q)  N No, "w E No, (of course ao • No), 

(5) [[Nil[ IIwll+llTII C Ni+l for each i < 5, 

(x) for i < 5, ~ = (Ti, <i,rki) is such that Ti consists of all sequences t = 

(t¢ : ~ E dom(t)} such that dora(t) is an initial segment of w, and 

• each t¢ is a sequence of length al ,  

• <t~:Iao: ¢ • dom(t))  • T, 

• for each ~ • dora(t),  either t¢(ao) = * or Q(ao) • Ni is a ?i-name for an 

element of Q_¢ and 

i f t¢(a)  ~ . for some a < ao, then Q(ao) ~ *, 

(¢) for Ti, t as above, rki(t) = min(w U {7} \ dora(t))  and <i is the extension 

relation. 

Then 

(a) each Ti is a standard (w, al)'r-tree, [[Ti[[ __ [[T[[. []Ni[[IIwN and if  i < 5 then 

Ti E Ni+l, 

(b) T is the projection of each 77i onto (w, ao),  and T/ increases  with i, 

(c) there is ~7 = (qt : t • Ta} • FTr '((}) such that 

(i) p 
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(ii) i f  t E T~ \ { (}}  then the condition qt E Pi-k~(0 is an upper bound 

of an (NI[i0, 5], P,.k~(O)*-gvneric sequence (where io < 5 is such that 

t E T~.), and, for every fl E dora(q0 = N~ M rkb(t), qt(fl) is a name 

for the least upper bound in ~/~ of an (N[g/~l[[~,5),gz~)*-generic 

sequence (for some ~ < 5), 

[Note that, by B.5.5, the first part of  the demand on qt implies 

that i f  io <_ ~ then qt[/~ forces that (2V[~z~][[~,~],~I[~,~]) is an S- 

coml)lenwntary pair.] 

(iii) i f t  ¢ T~, t '  = p ro j~  (t) E T, ¢ E doln(t) and t¢(a0) ¢ *, then 

qt[¢ IF-p("Pt'(¢) <_Q¢ t¢(c~o) =V t¢((Xo) <_~¢ qt(¢)", 

(iv) q<) = p<>. 

Proof." Clauses (a) and (b) should be clear. 

(c) One could t ry  to use directly B.7.1 for N{Z E N5 : I C_ P~ open dense} and 

suitably "extend" /5 (see, e.g., the successor case below). However, this would 

not guarantee the demand (ii). This clause is the reason for the assmnption tha t  

Ilwll < (,f(5). 
By induction on i < 5 we define a sequence (q~ : i < 5): 

~1 i = (q~ : t E Ti> is the <~-first seq,,ence ./~ = <rt: t E Ti} E FTr'((}) 

such tha t  

(i)i f ~proj~ i 'r and (Vj < i)(Vt E Tj)(q] <--P:k¢,)'rt), 

(ii)i if t = (t¢ : ¢ G dora(t)} E Ti and t '  = p ro j~ ( t )  E T, then 

• (Vn ¢ ( lom(r t ) ) (pt , (c~)  = r~(~)  or  It-~, ,'~(c~) • Q~) ,  

and 

• '1" t E r ) { g  E Ni : g C_ ~:~rk~(t) is open (lense}, and 

• for every ¢ E dora(t) such that  Q(c~0) ¢ *, 

'rtI~ I[-p¢ "Pt'(~) --<,~¢: t¢(o~o) =~ t¢((~O) <Q¢ rt(~)", 

(iii)i r() = P0" 

We have to verify tha t  this definition is correct,  i.e., tha t  for each i < 5 there is 

an '? satisfying (i)~-(iii)i. So suppose that  we arrive at a non-limit stage i < 5 and 

we have defined (qJ : j < i}. Note that  necessarily (qJ : j < i} E Ni ( remember  i 

is non-limit).  Let i = j + l  and, i f j = - l ,  letq~-I = p  .%,., for t c T 0  andlet ,  proJT ( i t  

T-L = {()}. For t E Ti we define .~t E P,-ki(t) as follows. 
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• If t E Tj, then st = qJ. 

• I f t  E Ti \ T j  and (* E w is the first such tha t  tI(i* + 1) ~ Tj, then we let 

dora(st) = dom(q~p;.) U dom(pt,) U dora(t), where t' = proj~ (t). Next we 

define st(() by induction on ( E dora(st): 

if ( E dom(st)  N (*, then st(()  = q~p(. ((), 

if ( E dom(t) \ (* and t((ao) # *, then st(()  is the <~-first ]?(-name for 
an element of _Q¢ such tha t  

st[( IF-p< "Pt'(() _< St(() and Pt,(() <_ t((c~o) ~ t¢(ao) _< st(()" 

and otherwise it is Pt, ((). 
It should be clear tha t  ~ = (st : t E Ti} E FTr '(Q).  Now we apply B.7.1 to Ti, g 

and 

:Z* ~f  A {Z E Ni : Z C_ P.~ open dense} 

and we find S = (rt : t E Ti} E FTr '(Q) such that  g _< S and, for each t E Ti 

rt E {q l rk / ( t ) :  q E Z*} and (Yc~ E dom(rt))(st(c~) = rt(c d or I~-s~ rt(c~) E Q~). 

One easily checks that  this ~ satisfies demands (i)i-(iii)i. 

Now suppose tha t  we have successfully defined qJ for j < i, i < 5 linfit ordinal. 

Fix t E Oj<i Tj, say t E Tjo, jo < i. We know that  Ty o c_ Njo+l (remember the 
assumption (6) and the assertion (a)) and that  for each j < i, (c7 ~ : e <_ j)  E Nj+I. 
Consequently, 

(Vj E [jo, i))((q~ : jo <_ e < j} E Nj+I). 

By the demand (ii)~ we have tha t  (q~ : Jo _< e < i} is an (NI[jo, i],Prk~o(t))*- 
generic sequence. As P~k~o(t ) is complete for $ (see B.5.6) and No contains all 

witnesses we conclude tha t  the sequence (q~ : Jo < e < i} has an upper bound in 

F~k~o(t). Moreover, if (~ < rk/o(t ), and q E I)~ is an upper bound of the sequence 

(q~ Ia : j0 < e < i), then 

q IF-~ "(q~(a):  jo _< e < i} has an upper bound in _Qa" 

(see the proof of B.5.6). Now we let dom(st) = U{dom(q~) : j0 _< z < i} and we 

define inductively 

st(a) is the <~-first ?~-name for an element of Q~ such tha t  

stre~ I~-~ (vc E [jo, i))(q~(c~) <_Q, st(a)). 
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This defines ~o = (st : t E Uj<i Tj).  Clearly Uj<i rj is a s tandard  (w, OZl) 3'- 

t r e e  and .~ E FTr ' (Q) .  Now suppose tha t  t E Ti \ Uj<i Tj and let (* be the 

first such tha t  t I(* ~ Uj<i Tj (so necessarily dom(t)  r] ¢* is cofinal in ¢* and 

cf (o tp(dom(t )  r] ~*)) = of(i)). Then  U{s tK  : ( < (*} E PC.  Now define 

= : ¢ < ¢*}  ups, r[¢*, 

where t '  = p ro j~ ( t ) .  Note tha t  g = (st : t E Ti) E FTr ' (Q)  and, if t E Ti, 

a E dora(st) ,  then either s t (a)  = pt,(c~) or It-~, s t (a)  E _Qa. Now we proceed like 

in the successor case: we apply B.7.1 to g, Ti and 

27* da r~  { 27 E N~: 27 c_ I?~ open dense}, 

and as a result we get 'P = (rt : t @ Ti) E FTF'(Q) such tha t  for each t E Ti: 

st <_ rt C {q[rki( t )  : q E Z*} and 

(VO~ C dom(rt))(st(o~) = rt(o~) or IF-p~ rt(o~) E ~,a). 

Now one easily checks tha t  ~ satisfies the requirements (i)i-(iii)i. 

Thus our definition is the legal one and we have the sequence (~i : i < 5). 

We define q = ~5 similarly to ~ from the limit stages i < (~, but  we replace "the 

<~-first upper  bound in _Qa" by "the least upper bound in (~a". So suppose 

t E Ts. Since ]['w][ < cf((~) we know that  t E Tjo for some J0 < (~. We declare 

dom(qt) = U{dom(q~) : J0 _< ¢ < 5} and inductively define qt(c~) for a E dom(qt): 

qt(a) is the <~-first F~-nalne such tha t  

qt rot II-e~"qt (c~) is the least upper bound of the sequence 
E ^ I, (qt ( a ) :  j0 _< e < 5) in  _Q~ . 

Like in the limit case of the construction,  the respective upper bounds exist, so 

q = (qt : t E T~) is well defined. Checking that  it has the required properties is 
straightforward. | 

THEOREM ]3.7.3: Suppose that (Go,Gl) E ¢~<~(p*) (so Go E ¢<~(p*))  and Q = 

(~a, Q_ a : a < 7) is a (< t~)-support iteration such that, for each a < t~, 

I Fo is co,n lete for (&, G1)" 

Then 

(a) [[-F.~ ( g o , G x ) E  ~;~(]A*) ,  IIIOFeOVCF 
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(b) P~ is complete for (go, g~). 

Proo~ We need only part  (a) of the conclusion, so we concentrate on it. Let 

be a large enough regular cardinal, x be a name for an element of ~(X) and 

p E ]P~. Let ~:~ be a P~-name for the witness tha t  Q~ is (forced to be) complete 

for (g0,gl),  and let ~ = (x~ : a < 7). Since (go, gl) E ~<~(#*) we find /~/ = 

(Mi : i < 6) which is ruled by (go,g1) with an g0-approximation 
( ~ i :  - 1  < i < 6) and such tha t  p, Q, ~x, ~, gO, gl E M0 (see B.5.7). Let 

and let 5~ E go be such tha t  (~ i ,  5i) is an go-complementary pair. Let 

= {0 }u  U ( 7  n 
j< i  

(for i _< 6). By the demands of B.5.7 we know that IIw, II < cf(6d. 
By induction on i _< 6 we define s tandard (wi,/)?-trees T/ E ~i+1 and pi = 

(p~ : t E Ti} E FTr'((}) M M~+I such tha t  [[T~[[ _< [[Mi[[II~'~II <_ [[/~I/+1][, and if 
• (u,i,'/+l) ,,-,- ~ /5i. j < i _< 5 then Tj = proj(~j,j+l)(li ) and pJ --<proj~; 

CASE 1: i = 0 .  
Let T~ consist of all sequences (t¢ : ( E dora(t)) such that  dom(t) is an initial 

segment of Wo and t¢ = 0 for ¢ E dom(t).  Thus T~ is a s tandard (wo, 0) ~- 

tree, IIT~II -- llwoll. For t E Z~ let p~O = p t rk ; ( t ) .  Clearly the sequence/5 *0 = 
(p~.O : t E T~) is in FTr'((~) M No  1. Apply B.7.2 to go, Q, N - l ,  To*, wo and 

t5 *0 (note tha t  IIG-'II"'~o" <_ IINZ+~IlI'iNo-'" for e < 50). As a result we get a 
(wo, 1)~-tree To (the one called 7~o there) and po = (pro : t E To} E FTr ' (Q) Ct M1 

(the one called 4 there) satisfying clauses B.7.2(e), B.7.2(c)(i)-(iv) and such tha t  

IlZoll _< IIN£111 = IlMoll "w°" = IIMoll (remember cf(6o) > 211Moll). So, in 
particular, if t E To, ~ E dom(t) then t¢(0) E M1 is e i t h e r ,  or a l?¢-name for an 

element of Q¢. 

Moreover, we additionally require tha t  (To,P °) is the <x-first with all these 

properties, so To, t50 E Ms. 

CASE 2: i = i0 + 1. 

We proceed similarly to the previous case. Suppose we have defined T/o and ~o 

such tha t  T/o,/5 ~° E Mio+l, liT/o[ ] _< ]]Mio+l[[. Let T~* be a s tandard (wi,io)?-tree 
such tha t  

Ti* consists of all sequences (t¢ : ~ E dora(t)) such that  dom(t) is all 

initial segment of wi and 
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(Q: ~ • dons(t) Awio) • Tio and (V~ • dom(t)  \ w . i o ) ( V j  < i o ) ( Q ( j )  = *). 

..ro:(Wi,i) I,-r, T* p, i  io Thus T~ o = p j(~o,iO)/,  i ) and lI •II <_ tlMi]] • Let. t = Pe I rk ; ( t )  for t • 

T*,  t' = prOJ~o(t ). Now apply B.7.2 to go, Q, N i°, T~*, wi and 1O *i (check 

tha t  the assumptions are satisfied). So we get a s tandard  (wi,  io + 1)7-tree T// 

and a sequence f• satisfying B.7.2(e), B.7.2(c)(i) (iv), and we take the <~-first 

pair (T•,p •) with these properties.  In particular,  we will have IlZ~ll _< ]lASoll • 

IlN °ll ''M'o'' = IIM o+,ll, a n d / ~ i , ~  • Mi+I.  

CASE 3: i is a limit ordinal. 

Suppose we have defined Tj, pJ for j < i and we know that  

((Tj,fiJ) : j < i) • J~i+l 

(this is the consequence of taking "the <~-first such t h a t . . . " ) .  Let  T•* = 
<___ 

lim((Tj : j < i)). Now, for t E T/* we would like to define p~,i as the limit 

of p~ . However, our problem is tha t  we do not know if the limit exists. 
roJ ~; (t) p 

Therefore,  we restrict  ourselves to these t for which the respective sequence has 

an upper  bound.  To be more precise, for t E T/* we apply the following procedure.  
.T~* ,i (C~) Let. tJ = projT j (t) for j < i. Try to define inductively a condit ion Pt E 

Prk*(t) such tha t  dom(p~ i) = * U{dom(~¢)Nrk~ ( t ) :  j < i}. Suppose we have 

successfully defined p~i [c~, o, E dom(p~i), in such a way tha t  ' .i _> 

for all j < i. We know tha t  

p*i  i( ~ IF_l? ~ "the sequence ( ~  (a) : j < i) is <Q -increasing" 

So now, if there is a P~-name ~ for an element of Q~ such tha t  

(vj < <_% r), 

then we let p~(c~) be the Pa-name of the lub of ~ t j  (c~) : j  < i) in ~c~ and 

we continue. If there is no such T, then we decide that  t ¢ T/+ and we stop 

the procedure.  

Now, let ~ +  consist of those t E T/* for which the above procedure resulted in 

a successflll definition ofp~ i E Prk~'(t)- It might be not clear at the moment  if ~+  

contains anything more than  0,  but  we will see that  this is the case. Note that  

T *  w _ _  _ _  

j < i  j<• 
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Moreover, for e > 2 we have I[N~/IIII~II+IIT~+II _< IIN~lllIN~ll C_ N~+,i and T +,i ,,-5"i E 

* * r Mi+l.  Let  T//= Ti , Pi = f , i  (this t ime there is no need to take the <x-fi st pair 

as the process leaves no freedom). 

After the construct ion is carried out we continue in a similar manner  as in 

A.3.7 (but note a slightly different meaning of the *'s here). 
/--- 

So we let 7~ = lim((7~ : i < 5)). It is a s tandard (w~,(i)~-tree. By induction 

on a E w~ U {7} we choose q,  C I?~ and a ~ , - n a m e  ta  such tha t  

(a) I~-p "_t, e T~ & rk~(t~) = a" ,  and let i~ = min{i < 5 :  a e Mi} < 6, 

(b) H-p."tZ = t .  [/3" for/3 < a ,  

(c) dom(q , )  = w~ O c~, 

(d) if/~ < c~ then qz = qa [/3, 

(e) P~proj)(~.) is well defined and p~ ~ to < qa for each i < (f, 
pro j  Ti ( t a )  - -  

(f) for each/~ < c~ 

q. leeo"(vi < 5)(( tz+,)z( i)  = • ~ i < ig) and the sequence 

i ~ 
(i~,P-;o.T ~ "t ,(/~), ((tf~+~)~(i),P;rojre(t ~)(/~) : i0 ~ _< i < 6)) 

P J T ~  t ! B + ~  T~ t /B+ 

~o 

is a result of a play of the game ~[ao],<N,[a,]:i<~)(-QZ, 09¢), 

won by player COM",  

(g) the condit ion q.  forces (in l?.) tha t  

"the sequence 217/[q~,~] I[i~, (f] is ruled by (g0, g~) and (N~[Ge.] : i~ _< i < 5) 
^ 

is its g0-approximation".  

(Remember:  g~ is closed under end segments.) This is done in a completely 

parallel manner  to the last par t  of the proof  of A.3.7. 

Finally, look at  the condition q~ and the clause (g) above. | 

PROPOSITION B.7.4:  Suppose that #* = ~ and g ~ ~<,~(p*) is closed. Let 
(~ = (P~, Q_~ : ~ < 7) be a (< s)-support iteration such that, for each a < % 

I ~  ' ~  is strongly complete for g and llg~ll -< ~". 

Then P~ satisfies g+-cc (even more: it satisfies the ~+-Knaster  condition). 

Proo~ For c~ < 3, choose Fa-names ;ca and ba such tha t  

I~-~. "_xa witnesses tha t  _Qa is complete for g and 

_ha :_Q. ) ~ is one-to-one".  
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Since ~ E ~<~(#*), for each p E P-r we find an E-complementary pair (/VP, 5 p) 

such that NP = (NP: i _< co} and p, l},g,  (~'~ : a < 7), (h~ : a < 7) 6 N~. Next 

choose an increasing sequence 0 v = (q~' : i  < co) of conditions from P~ such that 

for each i < co: 

(a) p _< qo p, O p [('i + 1) e NP+I, 

(/3) q~ 6 ["I{Z ¢ Ni : Z C_ ?.~ open dense}. 

[Why is this possible? Remember B.5.6 and particularly B.5.6.4.] So the 

condition q~ is generic over Ni in the weak sense of clause (/3), and therefore it 

decides the values of h~(qP(ct)) for each j < i, (~ 6 dom(q p) (remember: i f j  < i 
P dom(q p) C ' then qj E Ni and thus _ Ni).  Let ~P ~ < ~ be such that for each i > j 

(remember qP is increasing) 

Suppose now that (pC : ~ < n+} C_ P~. For f < n+ let A¢ = Ui<~dom(q pC) (so 

A¢ C [?]<~). Applying the A-system lemma (remember n is strongly inaccessible) 

we find 2( C_ g+, IiXil = n + such that {A¢ : ~ 6 ,¥} forms a A-system and for 

each ~, ~ 6 ,¥: 

• IIA¢II = ItA~II, 

• i f a E A c M A ~  then 
pC 

nfin{i < co: a C dom(qi )} = min{i < co : a  ¢ dom(qP¢)}, 

and call it is, and for each i < co 
p~ 

otp(a M dom(q~¢)) = otp(a M dom(qi )) and ~i~P<'a = ¢p¢,a 

(the last for i >_ i~). 
We are going to show that for each ~, ¢ 6 ,¥ the conditions pC, p~ are compatible. 

To this end we define a common upper bound r of pC, p~. First we declare that 

dora(r) = A¢ O A~ 

and then we inductively define r(c~) for c~ ¢ dom(r): 

if a ¢ A¢ then r(¢) is a P~-name such that 

r id  IF-~,o"r(ct) is the upper bound of (q~< (a) : i < co} 

with the minimal value of _h~(r(a))" 

and otherwise (i.e., if a 6 A~ \ A¢) it is a ]?~-name such that 

r Ic~ IF-p,"r(ct) is the upper bound of (qP¢ (a) : i  < co) 

with the minimal value of _h~(r(a))". 
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By induction on (~ E dom(r) U {7} we show that 
pC p~ 

qi I °~ ~-~, r I(~ and qi Ic~ _<~,~ r r~ for all i < w. 

Note that, by B.5.5, this implies that the respective upper bounds exist and thus 

r(c~) is well defined then. There is nothing to do at non-successor stages, so 

suppose that we have arrived at a stage c~ --/3 + 1. 

If/3 E A¢ then, by the definition of r(/3), we have 

r[/3 I~-p, (Vi < w)(q~'¢(/3) <_ r(/3)). 

Similarly if/3 E A~ \ A¢ and we consider q~ (/3). Trivially, no problems can 
p~ 

happen if/3 E A¢ \ A~ and we consider qi (/3) or if/3 E A~ ". A¢ and we consider 
pC 

qi (/3). So the only case we may worry about is that /3 E A¢ N A~ and we want 
pC 

to show that  r(/3) is (forced to be) stronger than all qi (/3). But note: by the 

inductive hypothesis we know that r I/3 is an upper bound to both (q~¢ I/3 : i < w) 

and (q~ I/3 : i < w) and therefore 

r I 9  ( / 3 ) )  = ( / 3 ) )  = , 

p~ pC 
whenever i, j < w are such that /3 E dom(qi ), /3 E dora(q) ). But now, by the 

choice of 2( we have: 
p~ pC 

/3 E dom(qi ) +v [3 E dom(q i ), and -pC ./3 Cp~ ./3 

Since h~ is (forced to be) a one-to-one function, we conclude that 

p~ 
rl/3 It-e, (Vi < w)(qT¢(/3) = q i (/3)), 

so taking care of the ~'s side we took care of the ~'s side as well. This finishes 

the proof of the proposition. I 

For a stronger proposition, see [17]. 

B.8. The Axiom and its applications 

Definition B.8.1: Suppose that (~0,~1) E ~<~(#*) and 0 is a regular cardinal. 

Let hx~(~o, ~1), the forcing axiom for (~o, ~1) and O, be the following sentence: 

If Q is a complete for (~o, ~1) forcing notion of size _< t¢ and 

(Zi : i < i* < 0) is a sequence of dense subsets of Q, 

then there exists a directed set H C_ Q such that 

(Vi < i*)(H M Ii  5 0 ) .  
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THEOREM B.8.2: Assume that p* = u, (go, g1) • ¢<*~(P*) and 
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Then 
that 

(/3) 
(/3 + ) 

< 0 = c f ( 0 )  _< ~ = u ~ .  

there is a strongly complete for go forcing notion P of cardinality # such 

P satisfies the ~;+-cc, 
IFp (gO, gl) • ~<~(P*) and even m o r e :  

i f  g~ C_ go,g~ C_ £1 are such that (g~,g;) • ¢<*,~(#*) then IF-~ (go, g~) • 
¢<%(.*), 
It-e Ax$(go, gl). 

Proof: The forcing notion P will be the linfit of a (< ~)-support iteration 

(P~,Q~ :c~ < c~*) (for some c~* < #+) such that 

(a) for each a < a* 

I~-~, "Q~ is a partial order on ~ complete for (g0, ga)". 

By B.7.4 we will be sure that P = Po. satisfies n+-cc. Applying B.7.3 we 

will see that tF-e~. (go,gl) ¢ ¢<*,~(#*) (also Y~. is complete for (gO, gl)). The 
iteration (Pa, Q~ : a < a*) will be built by a bookkeeping argument, but we do 

not determine in advance its length c~*. 

Before we start the construction, note that if Q is a h:+-cc forcing notion 

of size _< p, then there are at most p Q-names for partial orders on g (up to 

isomorphism). Why? Remember p~ = p and each Q-name for a poser on g is 

described by a g-sequence of maximal antichains of Q. By a similar argument we 

will know that each P,  has a dense subset of size _< p (for c~ _< c~*). Consequently 

there are, up to an isomorphism, at most # P~.-names for partial orders on ~;. 
Let J~ consist of all (< r~)-support iterations Q = (P~, Q~ : ~ < C~o) of length 

< #+ satisfying the demand (a) above (with a0 in place of c~*). Elements of R 
are naturally ordered by 

QO < ~ @  if and only if QO =Qareg(QO). 

Note that every <~-increasing sequence of length < #+ has the least upper bound 

in (~, _<~). By what we said before, we know that if (P~, Q~ : a < no) E ¢t, 

then P~o contains a dense subset of size < p, satisfies t~+-cc and forces that 

(go, gl) e ¢<~(#*). Moreover, 
(®~) if QO 0 o = (P~, Q~:  a < a0) ¢ t~ and Q is a P°~o-name for a forcing notion on 

~, then 
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either there is no Q1 = ( ~ ,  9 1 :  c~ < c~,) • .q such that (~o <~ Q1 and 

IF-pX, "9  is complete for (go, gl)" 

or there is Q1 = (l?~ Q'  : cr < a l )  • N such that 1}o <~ @ and 

It-~,~1 "there is a directed set H C Q which meets all 
o 

dense subsets of Q from V~'~o ''. 

[Why? Suppose that (®1) fails and it is exemplified by (}1. Take Q1 , Q.] 

Consequently, as t~ is closed under increasing < #+-sequences, we have 

(®+) for every Q G ~ there is (~o = { ~ , Q o  : a < Cto) e ~ such that Q _<~ Qo 

and for every Lim(Q)-name Q for a forcing notion on ~ one of the following 

conditions occurs: 
(g~l) there is no @ = (p~,Q1 : ct < Ctl) e ¢[ such that Qo _<*t ~7~ 1 and 

IF-~,51 "Q is complete for (go, gl)",  

(®+) II-t~o °" there is a directed set H c_ Q which meets all dense subsets of Q 

from V Li r a (Q)"  . 

[Why? Remember that there are at most It Lim(Q)-names for partial orders 

on n and (J~, _<~) is p+-directed.] 
Using these remarks we may build our iteration in the following way. We 

choose a <_A-increasing continuous sequence ( ~  : ~ <_ 0 + ) C_ ~q such that  

(b) for every ~ < 0 +, ~7~ +1 is given by (®+) for @.  

Now it is a routine to check that P = II~ + is as required. II c~0+ 

In B.8.3 below remember about our main case: S* c_ t¢ is stationary co- 

stationary and go consists of all increasing continuous sequences ~ = (ai : i <_ c~) 

such that ai C t¢ \ S* (for i <_ ol). In this case the forcing notion 1R is the stan- 

dard way to make the set S* non-stationary (by adding a club of n; a condition 

gives an initial segment of the club). Since forcing with R preserves stationarity 

of subsets of ~; \ S*, the conclusion of B.8.3 below gives us 

(.) in V Limq), every stationary set S C_ n \ S* reflects in some inaccessible. 

PROPOSITION B.8.3: Suppose that (go,£~) E ¢~<~(#*) (SOgo • ~<~(#*)),/z* = t¢ 
(for simplicity) and Q = (P~, 9~ : a < 7) is a (< ~)-support iteration such that, 

for ead~ c~ < ~, 

I~-~ ' ~  is complete for (go,~l) and 119 1t < ~-" 
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Further, assume that: 

(a) go is reasonably closed: it is closed under subsequences, under ~ and, i fh  = 

(ai : i <_ 5} E go and ~i = (b~ : a <_ ai) E go are such that b~o = ai, 

bia~ = ai+l (for i < 5), then the concatenation of  all ~.i (for i < ~) belongs 

to go [e.g., go is derived from S C_ ~: like in B.6.2], 

(b) = (go, <), 
(c) in V ~t and even in V R*C°hen'~, n is a weakly compact cardinal (or just: 

stationary subsets of  ~ reflect in inaccessibles). 

Then, in V ~'~*~, n is weakly compact (or just: stationary subsets of  ~ reflect 

in inaccessibles). 

Proo~ First. note tha t  the forcing with N does not add new sequences of length 

< n of ordinals. [Why? Suppose tha t  x is an R-name for a function from 0 to 

V,  0 < n is a regular cardinal  and r E R. Take an go-complementa ry  pair  (N,  ~) 

such tha t  72 = (Ni : i _< 0} and r, x E No and the error is, say, n. Now build 

inductively an increasing sequence ('r~ : i _< 0} C_ R such tha t  for every i < 0: 

• r0 = r, the condit ion 'ri+l decides the value of g~('i), 

• if i = 7 + k + 1, "~ is a non-successor, k < w then ri E N~+(2k+2)(,~+1) and 

if r.i (a~ : ~ <_ ai) then a i ---~ ai : a 'y+(2k+l)(n+l) '  

• if i < 0 is l imit then (rj : j < i} E Ni+l and r i is the least upper  bound of 

@j : j < i) (so ri E Ni+I) .  

The  construct ion is s traightforward.  If  we have defined ri E N.r+(2k+2)(n+l), 

then we first take the <x-f irs t  condit ion 'r~, = (a~ : ~ _< a*) s t ronger  than  r i and 

deciding the value of ~(i) (so r* E Ng+(2k+2)(,+l)).  We know tha t  

a*,c~. C_ a~,+(2k+2)(n+t)+~ ~ C N-r+(2k+2)(~+l)+2n+ 1 • 

Let r i+l = 'r~ ~(a.~+(2k+2)(n+l)+n. ). Clearly ri+ 1 E Ny+(2k+4)(n+l  ). By the choice 

of "the < . - f i r s t "  conditions we are sure that ,  arr iving at  a limit s tage i < 0, we 

have (rj : j < i) E Ni+l.  Now use the assumpt ion  (a) on go to argue tha t  the 

sequence (ri : i < 0) has a least upper  bound ro --  clearly this condit ion decides 

the name  z.] 

Wi thou t  loss of generali ty we may  assume that ,  for each c~ < 7, 

I~-p ° "_Qa is a par t ia l  order on n". 

For a forcing notion Q, let 0 s tand for the complet ion of Q with respect  to 

increasing < n-sequences (i.e., it is like Q but  we consider only increasing se- 

quences of length < n). Note tha t  Q is dense in (} and if IIQII -< n, then  11611 -< ~ 
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(n is strongly inaccessible!). Now, let / (P~, _Q~ : a < 7} be the iteration of the 

respective < n-completions of the _Q~'s. Thus each Pa is a dense subset of P'~ 

(see 0.18). We may assume that each _Qa is a P~-name for a partial order on 

+ n (for a < 7). Now, for a < 7, let 

~ = {p E P'a :there is a sequence (iSZ:/~ C dora(p)) such that for some 5 < n, 

each y = (p~ : ~ < 5) is a ~-sequence of ordinals < n and 

p(~) is (the P~-name of) the minimal (as an ordinal) 

least upper bound of/5 z by _<_Q~ }. 

Clearly by the assumption (c), if P is adding X Cohen, then in V ~*e the car- 

dinal n is weakly compact (or just every stationary subset of n reflects in some 

inaccessible), but • • ? = I? • ]R, so Claims B.8.3.1-B.8.3.3 finish the proof. 

CLAIM B.8.3.1: For each a <_ 7, ~ is a dense subset of P~. 

Proof of the claim: Let p E P~. By B.5.6 we know that P~ is strongly complete 

for g0- Let (/V, fi) be an g0-complementary pair such tha t /V = (N~ : i < ~) and 

P, Q, ~a, g0 . . . .  c No. Take an increasing sequence (qi : i < w} C_ Pa such that 

qi E Ni+l is generic over Ni and such that p _<?- q0. Now let q E P~ be defined 

by dom(q) = Nw (7 a and: 

qI~ IF-~ "q(/3) is the minimal (as an ordinal) least upper bound in _Q~ 

of the sequence (q~(/~) : i < ~)".  

By B.5.6.3 (actually by its proof) we know that the above definition is correct. 

Now it is routine to check that q E P~ is as required, finishing the proof of the 

claim. | 

One could ask, what is the point of introducing P"7 The main difference 

between P~ and ~" is that in the first, q(/3) is a least upper bound of an increasing 

sequence of conditions from _Qa, but we know the name for the sequence only. In 

P~, we have the representation of q(a) as the least upper bound of a sequence of 

ordinals from V! This is of use if we look at the iteration in different universes. If 

we look at Q (defined as an iteration in V) in V R, then it does not have to be an 

iteration anymore: let a < 7. Forcing with R may add new maximal antichains 

in ]?~, thus creating new names for elements of _Q~. However 

l /  CLAIM B.8.3.2: For each a <_ 7, in V R, ( ~ ,  _Qz : a _ %/3 < 7) is a (< n)- 

support iteration. 

Proof  of  the claim: Easy induction on a. | 
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CLAIM B.8.3.3: For each (~ < ~, 

IF-~,R ' ~  is isomorphic to Cohen~". 

Proof of the claim: Working in V~% choose an increasing continuous sequence 

iV = (Ni : i < n) of elementary submodels of (?-/(X), E, <x) such that Q~ E No 

and for each i < n: 

P(F(i + 1) E Ni+l, N~ N ~¢ E ~, and IIN~[] < ~. 

Now, passing to V ?"*R, we can find an increasing continuous sequence j = 

(j¢ : ~ < ~) C_ n such that 

(vc < n ¢ _ E go). 

[Why? Forcing with R adds an increasing continuous sequence/) = (~¢ : ~ < ~} 

such tha t / ) [ (~+  1) E go for each ~ < t~. Now let ~ be the increasing enumeration 

of {j < a :  Nj M n = j & (34 < ~)(j =/3~.¢)}; remember that g0 is closed under 
subsequences.] 

Now, for p E Q~ let 

j ( p ) = s u p { j < ~ : j = O o r j E  { j ¢ : ~ < ~ }  and 

p E N { Z  E N j :  Z C_ Q,~ is open dense in V ~ } }  

and k(p) = min{j < ~: p E Nj}.  Now we finish noting that 

1. if i5 -- (p~ : e < 5} is increasing in ~ and such that (re < 5)(k(p~) < 

J(p~+l)), then the sequence t5 has an upper bound in ~ ;  
2. for every j < g, the set {p E ~ a :  J(P) > J} is open dense in ~ . 
This finishes the proof of the claim and the proposition. | 

Alternatively, first prove that wlog 7 < ~+ and then show that P~ becomes 
K-Cohen in V ~. | 

CONCLUSION B.8.4: Assume that 

(a) Vo ~ ~ is weakly compact and GCH holds (for simplicity), 

(b) V1 is a generic extension of V0 making "n weakly compact" indestructible 

by Cohen~ (e.g. iterate with Easton support adding a n'-Cohen subset to ~ for 
every inaccessible t~' < n), see [5], 

(c) V2 = V~ °, where Ro adds a stationary non-reflecting subset S* of t~ by 

initial segments fully, ® is a non-empty set of regular cardinals < n and R = 

{S a bounded subset of t~, 5 E S =:~ cf(5) E ® and S N 5 is not stationary in 5 for 

every 5 <_ sup(S)} ordered by being initial segment, S* = [_J G•. 
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(d) Further,  in V2, let g0 = g0[S*], gl = gl[S*] be as in B.6.2 (or similar 

enough), bo th  in V2. 

(e) Suppose tha t  (~ is a (< ,~)-support i terat ion of forcing notions on ,~, say of 

length ~f*, complete for (g0, gl) .  

Let V3 = V Lim(Q) and let R be the forcing notion killing s ta t ionari ty  of S* in 

V3, but  also in V2; see B.8.3, so equivalently R is {e : e a closed bounded subset 

of g disjoint to S*} ordered by being initial segment. 

Then  
(C~) V 2  N ----- "TIR°*R ----- V l  COhen "g --1 ~ is weakly compact  indestructible by Cohen",  

and in V~. Consequently, 

(~)  i n  V 3  R : (V2~) lim(Q), g is weakly compact ill V 3  R. 

CONCLUSION B.8.5: 

1. Let  ~ be a weakly compact  cardinal, ~:~ = X. Then  for some forcing notion 

we have, in V1 = V ~ (which is a model of ZFC): 

(a) there are almost free Abelian groups in ~ and g is a strongly inacces- 

sible cardinal, 

(b) all almost free Abelian groups in g are Whitehead.  

2. If V ~ GCH then V ~ ~ GCH. 

3. We call add: 

(c) the forcing does not collapse any cardinals nor changes cofinalities, 

and it makes 2 ~ = \ ,  ) / =  IIIl~ll, 

(d) for some s ta t ionary subset S* of ~ which is non-reflecting and has 

s ta t ionary intersection with S~ (=  {~ < ~ : of(d) -- ~}) for every 

regular 0 < ~, we have 
(a)  every s ta t ionary subset of t,: "-- S* reflects in some inaccessible, 

(L/) if p < ~, 0 < I*, S C_ S * \ p  + is s ta t ionary and A = (A~ : 5 E S) 

satisfies Aa C (f = sup(A~) and otp(Aa) = cf(5) = 0 for 5 E S, 

then A has unireformization for colouring with <_ p colours, 

(7) lett ing go, gl be defined from S* as above (i.e., in B.6.2), we 
h; ^ ^ have Axe+ (go, El), 

(5) if n < 0 = of(0) _< ~: then we can add Ax~(g0,gl )  (so above 

0 = ~+). 
If a is h:-Cohen indestructible weakly compact  cardinal (or every 

s ta t ionary set reflects) then we may add: 

(e) tile forcing adds no bounded subsets to h;. 

Proof." 1) Let  V0 = V and let V1 ,V2,No be defined as in B.8.4, just  for 

simplicity R0 adds a non-reflecting s ta t ionary subset of {5 < ~ : of(5) = Ro}, 
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i.e., ® = {R0}. Working in V2 define Q = (P~, _Q~ : ~ < a*}, ~* < k + to be as 

in the proof of the consistency of Axe(d0, dl) in B.8.1. The desired universe is 

V3 = V 2 • 
Clearly, as every step of the construction is a forcing extension, we have V3 = 

V P for some forcing notion P. The forcing notion Ro C V1 adds a non-reflecting 

stationary subset S to t,:. As l?~, preserves ($~,~1 s) E ¢<~(#*) (by B.7.3), the 

set S is stationary also in V3. Since (V~ E S)(cf(~) = I%) we may use S to build 

an almost free Abelian group in ~, so clause (a) holds. Let us prove the demand 

(b). 

Suppose that G is an ahnost free Abelian group in n with a filtration G = 

(Gi : i < n). Thus the set "~(G) = {i < n : G/G~ is not n-free} is stationary. 

Now we consider two cases. 

CASE 1: The set 7(G) \ S is stationary. 

By B.8.4 we know that after forcing with R (defined as there) the cardinal n is still 

weakly compact (or just all its stationary subsets reflect in inaccessibles). But 

this forcing preserves the stationarity of 7(G) \ S (and generally any stationary 

subset of n disjoint from S, as S does not reflect). Consequently, in V3, the set 

F' = {n ~ :h:' is strongly inaccessible and 

(7(G) \ S) n n' is a stationary subset of ~'} 

is stationary in ~. Hence for some n' E F' we have (Vi < n')(lIG~l[ < ~') and 

therefore the filtration (Gi : i < n~l of G~, shows that G~, is not free, contradict- 

ing "G is ahnost free in n ' .  

CASE 2: The set 7(G) \ S is not stationary. 

By renaming, wlog 7(G) C_ S. We shall prove that G is Whitehead. So let H 
be an Abelian group extending Z and let h: H ont~ G be a homomorphism such 

that Ker(h) = Z. By B.6.10 the forcing notion I? = Fh,H,C is well defined, and 

it is complete for (~5 s', ~s) and has cardinality n (and for each ~ < n the set 

:Y~ = {p e P : G~ _c p} is dense in P). Since V3 ~ Ax$($o,~l),  there is a 

directed set ~ c P such that ~ M Z~ # q} for each ~ < t~. Thus f = (J G is a lifting 

as required (and G is Whitehead). 

2) Implicit in the proof above. | 
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